Cancers related to genetic mutations

Important psychosocial issues for Canadian family physicians

Tara E. Power, LLB, PhD
John Robinson, PhD, RPSYCH

ABSTRACT

OBJECTIVE To review psychosocial issues family physicians might wish to be aware of when discussing genetic testing for predisposition for cancer with their patients.

QUALITY OF EVIDENCE Articles from academic journals were reviewed. Studies provided level II and III evidence.

MAIN MESSAGE Family physicians should be prepared to explore their patients’ decisions for or against genetic testing, as well as to discuss the possible outcomes of a decision to test. While genetic testing has many potential benefits, patients are at risk of having psychosocial problems at many stages in a genetic testing inquiry. To minimize these problems, family physicians should discuss motivation for testing and the potential psychosocial effect of both deciding to undergo and deciding to forgo genetic testing for cancer-related genes. Also important are deciding whether patients qualify for the tests; coping with the waiting period before testing can be done; and discussing positive, negative, and inconclusive outcomes of testing.

CONCLUSION Family physicians are likely in the best position to discuss genetic testing for predisposition for cancer with their patients given their knowledge of both the tests and their patients’ ability to cope with testing.

RÉSUMÉ

OBJEKTIF Faire le point sur les aspects psychosociaux que le médecin de famille pourrait désirer connaître lorsqu’il discute de tests génétiques pour la prédisposition au cancer avec un patient.

QUALITÉ DES PREUVES Des articles de revues scientifiques ont été consultés. Les preuves obtenues étaient de niveaux II et III.

PRINCIPAL MESSAGE Le médecin de famille devrait être en mesure d’examiner avec le patient sa décision de subir ou non un test génétique et de discuter avec lui des issues possibles s’il décide de subir les tests. Même si le dépistage génétique comporte plusieurs avantages éventuels, le patient risque de rencontrer des problèmes d’ordre psychosocial à plusieurs étapes du processus. Pour minimiser ces problèmes, le médecin devrait discuter des motivations à subir les tests et des effets psychosociaux potentiels de la décision de subir les tests pour les gènes associés au cancer ou d’y renoncer. Il est également important de vérifier si le patient se qualifie pour les tests; de tenir compte de la période d’attente avant que les tests puissent être faits; et de discuter des résultats positifs, négatifs ou non concluants du dépistage.

CONCLUSION Le médecin de famille est probablement le mieux placé pour discuter des tests génétiques pour la prédisposition au cancer avec son patient, parce qu’il connaît les tests ainsi que la capacité du patient à faire face au dépistage.
Genetic testing is becoming available for an increasing number of genes that predispose patients to cancer (Table 1). Although patients might initially have learned about genetic testing for cancer from the media and might ultimately be referred to specialists, family physicians are often their primary source of information. This paper outlines some of the psychosocial issues involved in genetic testing for cancer to assist family physicians in fully informing and advising patients about the benefits and limits of testing.

Quality of evidence
MEDLINE and PsychINFO were searched from January 1956 to December 2005 using the key words “genetic testing” in various combinations with “cancer,” “psychological,” “sociological,” and “ethics.” Original research articles and review articles pertaining to motivation for or against genetic testing and to the effects of genetic testing were chosen. Most studies offered levels II and III evidence.

Why psychosocial issues need to be addressed
With the growing availability of genetic tests for cancer, family physicians are increasingly called upon to discuss the physical and psychosocial aspects of testing. They often have the initial duty of informing and advising their patients about the risks and benefits of knowing about a family history of cancer and of undergoing genetic testing.

What drives interest in presymptomatic testing for cancer-related genetic mutations?
Some authors have suggested that one of the best ways to minimize psychological distress around discussing the risks of cancer and genetic testing is to fully explore patients’ motivation for undergoing or forgoing testing. Family physicians are in a unique position to understand their patients’ motivations, as their ongoing relationships with them can give insight into what patients truly wish to obtain from testing. This paper outlines some of the motivational forces for or against testing that family physicians might want to explore with their patients.

Table 2 lists reasons commonly given by patients for their interest in genetic testing. Additional, more subtle, influences might, however, need to be explored. These include the following:
• fear and worry,
• a need for certainty and control, and
• anticipated unpleasant emotions.

It appears that those who are most fearful of cancer and who believe (rationally or not) that they are at high risk of developing a hereditary cancer syndrome are

Table 1. Prevalence of hereditary cancer syndromes, risk, and options for surveillance and prophylaxis

<table>
<thead>
<tr>
<th>HEREDITY CANCER SYNDROME</th>
<th>RISK IN THE GENERAL POPULATION (%)</th>
<th>RISK AMONG THOSE WITH THE MUTATION (%)</th>
<th>SURVEILLANCE OPTIONS</th>
<th>PROPHYLACTIC OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hereditary breast and ovarian cancer: BRCA1 and BRCA2 mutations</td>
<td>Breast cancer: 11-14</td>
<td>Breast cancer: 50-85</td>
<td>Mammography (or magnetic resonance imaging, where available); clinical breast examination; and breast self-examination</td>
<td>Bilateral mastectomy Salpingo-oophorectomy^</td>
</tr>
<tr>
<td></td>
<td>Ovarian cancer: 1-2</td>
<td>Ovarian cancer: 35-45</td>
<td>Pelvic examination; CA125 test</td>
<td></td>
</tr>
<tr>
<td>Hereditary nonpolyposis colorectal cancer</td>
<td>Colon cancer: 2</td>
<td>Colon cancer: 40-90</td>
<td>Colonoscopy</td>
<td>Colectomy</td>
</tr>
<tr>
<td>Familial adenomatous polyposis</td>
<td>Colon cancer: 2</td>
<td>Colon cancer: 60-100</td>
<td>NA</td>
<td>Colectomy</td>
</tr>
<tr>
<td>Hereditary prostate cancer</td>
<td>Prostate cancer: 11</td>
<td>Prostate cancer: 22-88</td>
<td>Regular digital examination; prostate-specific antigen testing</td>
<td>Prostatectomy</td>
</tr>
</tbody>
</table>

NA—not applicable.

Dr Power and Dr Robinson are researchers in the Department of Psychosocial Resources at the Tom Baker Cancer Centre in Calgary, Alta. Dr Robinson also teaches in the Department of Oncology and the Program in Clinical Psychology at the University of Calgary.
Patients might also need help from their family physicians in managing their anticipated emotional reactions to all the possible outcomes of such genetic testing. It appears that the decision to undergo or forgo genetic testing is as influenced by a desire to regulate emotional reactions in the future (ie, to avoid future regret, guilt, or worry about being at increased risk of developing cancer) as by the desire to deal with the potential physical health threat.

Demographic influences

Family physicians discussing genetic testing with patients might consider potential demographic influences on the testing decision also. These include the following:

- Patients with a family history of cancer might be less interested in testing than those without such a history.
- Education level might affect a patient’s willingness to consider genetic testing. Although few studies support this hypothesis, some suggest that patients with less education are more likely to be interested in testing for HNPCC, hereditary polyposis colon cancer, and BRCA1 and BRCA2. Family physicians might wish to consider their patients’ education levels to ensure that decisions are based on a firm understanding of genetic testing.
- Age might increase the likelihood of seeking testing, but it might also decrease it.

Who qualifies for provincially funded testing?

The rules on who qualifies for provincially funded cancer genetic testing vary among provinces. Table 3 lists websites and contact information for genetics clinics in each region of Canada. Patients often are eligible for genetic counseling, which involves reviewing family history of cancer and analyzing patients’ risk, but do not qualify for genetic testing itself. Family physicians might wish to ensure that patients are aware of the possibility of not qualifying for testing. Patients not qualifying might require extra counseling and support, as it has been suggested that patients who do not qualify for testing experience high levels of anxiety and worry as a result of not having their uncertainties addressed.

Are patients prepared for the wait?

Patients need to know how long they will have to wait for test results, and family physicians should assess patients’ ability to cope with anxiety during the wait. It is not unusual to wait between 1 and 2 years for full genetic sequencing and test results in Canada. Patients might require psychological support from family physicians during the wait, because that time can be most distressing, even more distressing than discovery of a positive mutation.
Test results: positive, negative, or inconclusive?
As well as reviewing motivation for testing, family physicians should discuss the outcomes of testing with their patients.

Positive for mutation
Adverse psychological effects: Although results of early research suggested patients might suffer great distress as a result of presymptomatic genetic testing, recent studies have shown that carriers suffer little regret and little psychiatric dysfunction, and only a few report feeling distressed. In fact, there is some suggestion that those at high risk of familial cancer who decline testing are actually at increased risk of depression.

Certain characteristics, however, do make some patients more likely to be upset by a positive result. Patients with little social support who are initially highly distressed or who have unreasonable expectations of the outcomes of genetic testing can become depressed or anxious when results are positive. Support and services need to be available for patients traumatized by positive results, and finding these services might fall to family physicians.

Insurance discrimination: In discussing genetic testing, patients might express concern about being able to get extended health or life insurance if results of a genetic test are positive. Although no case has yet tested the issue in the Canadian courts, the Canadian federal and various provincial governments have instigated legislation to protect patients’ private medical information, including their genetic status. It is unclear how these statutes will hold up against the Canadian Institute of Actuaries, the Canadian Life and Health Insurance Association’s view that results of genetic testing should be available to insurance companies as part of insured patients’ health history. Currently, the Canadian Genetics and Life Insurance Task Force is attempting to develop a fair policy on integrating genetic information in the underwriting process.

Disclosure of results: Another point of discussion should include disclosure of test results. In families with strained relationships, decisions about whom to inform and how to inform them could be difficult for patients. Patients might also require support from their physicians when they disclose positive test results to children.

Further decisions: Patients should also be prepared to make further decisions should they be found to be carriers of the cancer-predisposing genetic mutation. Discovery of a positive test result might lead to more uncertainty about future health because the preventive treatment options are limited or life-altering. This is the case with bilateral mastectomy and oophorectomy to prevent breast or ovarian cancer. On the other hand, discovery of a genetic mutation might give patients psychological reassurance if they have
opportunities for more intense surveillance strategies or even risk-reducing surgery.

Negative for mutation

Distress: Patients with a strong family history of cancer, might not be reassured by finding out they do not have a gene mutation.\(^6\) Distress: Patients with a strong family history of cancer, might not be reassured by finding out they do not have a gene mutation.\(^6\) “Survivor guilt,” or guilty feelings at not having the mutation in a family where some members do, can cause distress.\(^6\)^70

Future surveillance: Negative test results sometimes give patients such a sense of security that they fail to continue with recommended surveillance.\(^17\) Physicians need to remind these patients that those who test negative carry at least the same risk of cancer as the general population and that it remains important for them to have regular cancer screening.

Inconclusive test results. Unfortunately, genetic testing sometimes produces inconclusive results. Because only a small proportion of mutations on cancer-related genes have been proven to be linked to development of cancer, these are the mutations for which genetic testing is done. The role of many mutations, however, is unclear, and they might in fact be related to predisposition for cancer. Genetic testing results are said to be inconclusive in these situations. As many as 75% of genetic tests for cancer gene mutations are estimated to result in inconclusive findings.\(^72\) The greatest psychological morbidity is associated with patients who receive inconclusive results.\(^73\) Although largely not studied, it could be that patients would cope better with such findings if they were prepared ahead of time for such a possibility.\(^11\)

Conclusion

Family physicians might be called upon to assist their patients with the psychosocial issues that accompany genetic testing for cancer. Physicians should be prepared to explore their patients’ motivation for undergoing or forgoing genetic testing as well as to discuss the outcomes of testing decisions. Such discussion should cover who is qualified for testing and why patients might not qualify; coping with waiting for results; and the ramifications of having positive, negative, or inconclusive results of the tests.

Acknowledgment

Dr Power is currently a Canadian Cancer Society Postdoctoral Fellow funded through the National Cancer Institute of Canada.

Competing interests

None declared

Correspondence to: Dr Tara Power, Department of Psychosocial Resources, TBCC-Holy Cross Site,

2202 Second St SW, Calgary, AB T2S 3C1; e-mail Tarapowe@cancerboard.ab.ca

References

When the thoughtful historian gets far enough away from the nineteenth century to see it as a whole, no single feature will stand out with greater distinctness than the fulfilment of the prophecy of Descartes that we could be freed from an infinity of maladies both of body and mind if we had sufficient knowledge of their causes and of all the remedies with which nature has provided us. Sanitation takes its place among the great modern revolutions—political, social and intellectual. Great Britain deserves the credit for the first practical recognition of the maxim salus populi suprema lex. In the middle and latter part of the century, a remarkable group of men, Southwood Smith, Chadwick, Budd, Murchison, Simon, Acland, Buchanan, J.W. Russell and Benjamin Ward Richardson, put practical sanitation on a scientific basis. Even before the full demonstration of the germ theory, they had grasped the conception that the battle had to be fought against a living contagion which found in poverty, filth and wretched homes the conditions for its existence. One terrible disease was practically wiped out in twenty-five years of hard work. It is difficult to realize that within the memory of men now living, typhus fever was one of the great scourges of our large cities, and broke out in terrible epidemics—the most fatal of all to the medical profession. In the severe epidemic in Ireland in the forties of the last century, one fifth of all the doctors in the island died of typhus.

Sir William Osler (1849–1919)

The Evolution of Modern Medicine

[a series of lectures delivered at Yale University on the Silliman Foundation] April 1913