Topic: Type 2 Diabetes

Summary: Several gene variants have been associated with an increased susceptibility to type 2 diabetes. Variants within the TCF7L2 gene show some of the largest effects. It is likely that additional gene variants for susceptibility to diabetes will be discovered.

Bottom line: Currently, genetic testing for type 2 diabetes susceptibility is not clinically available in Canada. Furthermore, it is not clear whether such test results would provide health benefits for patients with or without type 2 diabetes. In contrast, it is important to recognize rare monogenic forms of diabetes such as MODY (maturity-onset diabetes of the young) as genetic testing is clinically available and the results can influence treatment and prognosis.

The Disease
- Type 2 diabetes is also known as adult-onset diabetes or non-insulin dependent diabetes mellitus (NIDDM).
- It is characterized by hyperglycemia.
- It can be caused by defective insulin secretion, defective responsiveness to insulin or increased glucose output by the liver.
- Approximately 90% of individuals with a diagnosis of diabetes have the type 2 form.
- The worldwide prevalence of type 2 diabetes is approximately 6%.
- The prevalence is highest in older groups (e.g. for diabetes, type unspecified, the risk is 10.8% in the 40-59 age group and 23.1% in the >60 age group). Source: 2003-06 US National Health and Nutrition Examination Survey estimates of total prevalence (both diagnosed and undiagnosed) projected to year 2007.
- The age of onset is usually over 40.
- It is controlled by diet, exercise and often oral hypoglycemic drugs or insulin.
- Risk factors include obesity, age and family history.
- Uncontrolled/undetected disease can lead to blindness, heart and kidney disease, reduced blood supply to limbs, nerve damage, or stroke.
- There is evidence of a genetic component to the risk of type 2 diabetes, including a sibling risk ratio of ~3.5.

The Genes
- There are several gene variants associated with an increased susceptibility to type 2 diabetes.
- Each gene variant contributes a modest effect.
- Most of the gene variants found to date surprisingly influence beta-cell insulin secretion rather than insulin action.
- To date, variants within the TCF7L2 gene show some of the largest effects compared to other susceptibility gene variants.

Consequences of having susceptibility variant allele(s) using TCF7L2 as an example
- Compared with non-carriers, the relative risk of type 2 diabetes in individuals who have two copies of (are homozygous for) the TCF7L2 variant is 2.41. About 7% of the population is homozygous for this variant.
Compared with non-carriers, the relative risk of type 2 diabetes in individuals who have one copy of (are heterozygous for) the TCF7L2 variant is 1.45. About 38% of the population is heterozygous for this variant.

Who should be offered referral for genetic counselling/testing?
- Most of the time, a diagnosis or family history of type 2 diabetes is not a strong indication for a referral for genetic counselling. Patients may prefer a conversation with their health care provider about their empiric risks of developing this disease as genetic testing for type 2 diabetes susceptibility gene variants is not currently available in Canadian Genetic Clinics.
- Although uncommon, please be on the look out for:
 - Young age of onset of diabetes (i.e., neonatal period to age 25).
 - The presence of other medical conditions in a patient that, in conjunction with the diabetes, suggest a genetic syndrome (e.g. lipodystrophy).
 - These rare forms of diabetes can be caused by a *single* gene mutation (i.e., monogenic) and in these cases, genetic counselling and/or genetic testing may be appropriate as it can influence treatment and prognosis.

Testing for type 2 diabetes susceptibility gene variants
- Testing for known susceptibility gene variants is not recommended for type 2 diabetes risk assessment at this time because the presence of these variants is neither necessary nor sufficient for development of type 2 diabetes.
- There are rare monogenic forms of diabetes for which gene testing is available and tips to identify these patients are listed above.

Benefits of genetic testing
- Not applicable, as testing for the type 2 diabetes susceptibility gene variants is not currently offered as a standard clinical test.
- As more and more gene variants are identified, clinical testing may become available in the future.

Harms/limitations of genetic testing
- Not applicable, as testing for the type 2 diabetes susceptibility gene variants is not currently offered as a standard clinical test.
- However, if clinical testing becomes available in the future, patients with a low susceptibility risk may have a false sense of reassurance that they will never develop type 2 diabetes. Conversely, a positive result would not guarantee an eventual diagnosis of type 2 diabetes and may lead to increased anxiety.

Web Resources: Canadian Diabetes Association (www.diabetes.ca/)

References:
"Gene Messenger" is for educational purposes only and should not be used as a substitute for clinical judgement. The “GenetiKit” team aims to aid the practicing clinician by providing informed opinions regarding genetic services that have been developed in a rigorous and evidence-based manner. Physicians must use their own clinical judgement in addition to published articles and the information presented herein. The members of the GenetiKit research team assume no responsibility or liability resulting from the use of information contained on “Gene Messenger.”

Dr Carroll is Principal Investigator of the GenetiKit Project and is the Sydney G Frankfort Chair in Family Medicine at Mount Sinai Hospital and an Associate Professor in the Department of Family Medicine at the University of Toronto.

In alphabetical order, other members of the GenetiKit Team are as follows: Dr Allanson is Chief of the Department of Genetics at the Children's Hospital of Eastern Ontario (CHEO) in Ottawa, Ontario and Full Professor in the Department of Pediatrics at the University of Ottawa. Dr Blaine is an Assistant Professor in the Department of Family and Community Medicine at the University of Toronto in Ontario and Lead Physician of the STAR Family Health Team in Stratford, Ontario. Ms Cremin is a Clinical Assistant Professor in the Department of Medical Genetics, University of British Columbia. Ms Dorman is a Genetic Counselor at the Sudbury Regional Hospital in Ontario. Ms Gibbons is a Genetic Counselor at the North York General Hospital in Ontario. Dr Graham is Vice-President of Knowledge Translation, Canadian Institutes of Health Research. Dr Grimshaw is a Professor in the Department of Medicine and Director of the Clinical Epidemiology Program at the Ottawa Health Research Institute. Ms Honeywell is an Assistant Professor in the Department of Pediatrics at the University of Ottawa and in the CHEO Departments of Genetics and Cardiology. Dr Meschino is a Clinical Geneticist at North York General Hospital and Assistant Professor in the Department of Paediatrics at the University of Toronto. Ms Permaul is a Research Associate in the Granovsky Gluskin Family Medicine Centre at Mount Sinai Hospital. Dr Wilson is an Associate Professor in the Department of Epidemiology and Community Medicine at the University of Ottawa.