Skip to main content
Log in

Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Of about one dozen human P450 s that catalyze biotransformations of xenobiotics, CYP2D6 is one of the more important ones based on the number of its drug substrates. It shows a very high degree of interindividual variability, which is primarily due to the extensive genetic polymorphism that influences expression and function. This so-called debrisoquine/sparteine oxidation polymorphism has been extensively studied in many different populations and over 80 alleles and allele variants have been described. CYP2D6 protein and enzymatic activity is completely absent in less than 1% of Asian people and in up to 10% of Caucasians with two null alleles, which do not encode a functional P450 protein product. The resulting “poor metabolizer” (PM) phenotype is characterized by the inability to use CYP2D6-dependent metabolic pathways for drug elimination, which affect up to 20% of all clinically used drugs. The consequences are increased risk of adverse drug reactions or lack of therapeutic response. Today, genetic testing predicts the PM phenotype with over 99% certainty. At the other extreme, the “Ultrarapid Metabolizer” (UM) phenotype can be caused by alleles carrying multiple gene copies. “Intermediate Metabolizers” (IM) are severely deficient in their metabolism capacity compared to normal “Extensive Metabolizers” (EM), but in contrast to PMs they express a low amount of residual activity due to the presence of at least one partially deficient allele. Whereas the intricate genetics of the CYP2D6 polymorphism is becoming apparent at ever greater detail, applications in clinical practice are still rare. More clinical studies are needed to show where patients benefit from drug dose adjustment based on their genotype. Computational approaches are used to predict and rationalize substrate specificity and enzymatic properties of CYP2D6. Pharmacophore modeling of ligands and protein homology modeling are two complementary approaches that have been applied with some success. CYP2D6 is not only expressed in liver but also in the gut and in brain neurons, where endogenous substrates with high-turnover have been found. Whether and how brain functions may be influenced by polymorphic expression are interesting questions for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agundez JA, Ledesma MC, Ladero JM, Benitez J (1995) Prevalence of CYP2D6 gene duplication and its repercussion on the oxidative phenotype in a white population. Clin Pharmacol Ther 57:265–269

    Google Scholar 

  • Aklillu E, Persson I, Bertilsson L, Johansson I, Rodrigues F, Ingelman-Sundberg M (1996) Frequent distribution of ultrarapid metabolizers of debrisoquine in an Ethiopian population carrying duplicated and multiduplicated functional CYP2D6 alleles. J Pharmacol Exp Ther 278:441–446

    Google Scholar 

  • Arcavi L, Benowitz NL (1993) Clinical significance of genetic influences on cardiovascular drug metabolism. Cardiovasc Drugs Ther 7:311–324

    CAS  PubMed  Google Scholar 

  • Armstrong M, Idle JR, Daly AK (1993) A polymorphic CfoI site in exon 6 of the human cytochrome P450 CYP2D6 gene detected by the polymerase chain reaction. Hum Genet 91:616–617

    CAS  PubMed  Google Scholar 

  • Barbeau A, Cloutier T, Roy M, Plasse L, Paris S, Poirier J (1985) Ecogenetics of Parkinson’s disease: 4-hydroxylation of debrisoquine. Lancet 2:1213–1216

    Article  CAS  PubMed  Google Scholar 

  • Bathum L, Johansson I, Ingelman-Sundberg M, Horder M, Brosen K (1998) Ultrarapid metabolism of sparteine: frequency of alleles with duplicated CYP2D6 genes in a Danish population as determined by restriction fragment length polymorphism and long polymerase chain reaction. Pharmacogenetics 8:119–123

    CAS  PubMed  Google Scholar 

  • Baumann P, Rochat B (1995) Comparative pharmacokinetics of selective serotonin reuptake inhibitors: a look behind the mirror. Int Clin Psychopharmacol 10 [Suppl 1]:15–21

    Google Scholar 

  • Bertilsson L, Eichelbaum M, Mellstrom B, Sawe J, Schulz HU, Sjoqvist F (1980) Nortriptyline and antipyrine clearance in relation to debrisoquine hydroxylation in man. Life Sci 27:1673–1677

    Article  CAS  PubMed  Google Scholar 

  • Bertilsson L, Aberg-Wistedt A, Gustafsson LL, Nordin C (1985) Extremely rapid hydroxylation of debrisoquine: a case report with implication for treatment with nortriptyline and other tricyclic antidepressants. Ther Drug Monit 7:478–480

    CAS  PubMed  Google Scholar 

  • Bertilsson L, Dahl ML, Sjoqvist F, Aberg-Wistedt A, Humble M, Johansson I, Lundqvist E, Ingelman-Sundberg M (1993) Molecular basis for rational megaprescribing in ultrarapid hydroxylators of debrisoquine. Lancet 341:63

    CAS  Google Scholar 

  • Bock KW, Schrenk D, Forster A, Griese EU, Morike K, Brockmeier D, Eichelbaum M (1994) The influence of environmental and genetic factors on CYP2D6, CYP1A2 and UDP-glucuronosyltransferases in man using sparteine, caffeine, and paracetamol as probes. Pharmacogenetics 4:209–218

    CAS  PubMed  Google Scholar 

  • Bozkurt A, Basci NE, Isimer A, Sayal A, Kayaalp SO (1996) Metabolic ratios of four probes of CYP2D6 in Turkish subjects: a cross-over study. Eur J Drug Metab Pharmacokinet 21:309–314

    CAS  PubMed  Google Scholar 

  • Brockmoller J, Kirchheiner J, Schmider J, Walter S, Sachse C, Muller-Oerlinghausen B, Roots I (2002) The impact of the CYP2D6 polymorphism on haloperidol pharmacokinetics and on the outcome of haloperidol treatment. Clin Pharmacol Ther 72:438–452

    Article  PubMed  Google Scholar 

  • Broly F, Meyer UA (1993) Debrisoquine oxidation polymorphism: phenotypic consequences of a 3-base-pair deletion in exon 5 of the CYP2D6 gene. Pharmacogenetics 3:123–130

    CAS  PubMed  Google Scholar 

  • Broly F, Marez D, Sabbagh N, Legrand M, Millecamps S, Lo Guidice JM, Boone P, Meyer UA (1995) An efficient strategy for detection of known and new mutations of the CYP2D6 gene using single strand conformation polymorphism analysis. Pharmacogenetics 5:373–384

    CAS  PubMed  Google Scholar 

  • Brosen K, Gram LF (1989) Clinical significance of the sparteine/debrisoquine oxidation polymorphism. Eur J Clin Pharmacol 36:537–547

    CAS  PubMed  Google Scholar 

  • Brosen K, Gram LF, Haghfelt T, Bertilsson L (1987) Extensive metabolizers of debrisoquine become poor metabolizers during quinidine treatment. Pharmacol Toxicol 60:312–314

    CAS  PubMed  Google Scholar 

  • Caporaso N, DeBaun MR, Rothman N (1995) Lung cancer and CYP2D6 (the debrisoquine polymorphism): sources of heterogeneity in the proposed association. Pharmacogenetics 5:S129–S134

    PubMed  Google Scholar 

  • Carcillo JA, Parise RA, Adedoyin A, Frye R, Branch RA, Romkes M (1996) CYP2D6 mRNA expression in circulating peripheral blood mononuclear cells correlates with in vivo debrisoquine hydroxylase activity in extensive metabolizers. Res Commun Mol Pathol Pharmacol 91:149–159

    CAS  PubMed  Google Scholar 

  • Cesaro C, Raimundo S, Klein K, Schaeffeler E, Eichelbaum M, Schwab M, Zanger UM (2003) CYP2D6 “Intermediate Metabolizer” phenotype as a consequence of genetically determined alternative splicing. Chem. Listy, Symposia, 97 (2003), Abstract TP41, S137

  • Chen S, Chou WH, Blouin RA, Mao Z, Humphries LL, Meek QC, Neill JR, Martin WL, Hays LR, Wedlund PJ (1996) The cytochrome P450 2D6 (CYP2D6) enzyme polymorphism: screening costs and influence on clinical outcomes in psychiatry. Clin Pharmacol Ther 60:522–534

    Google Scholar 

  • Chou WH, Yan FX, de Leon J, Barnhill J, Rogers T, Cronin M, Pho M, Xiao V, Ryder TB, Liu WW, Teiling C, Wedlund PJ (2000) Extension of a pilot study: impact from the cytochrome P450 2D6 polymorphism on outcome and costs associated with severe mental illness. J Clin Psychopharmacol 20:246–251

    Article  CAS  PubMed  Google Scholar 

  • Chou WH, Yan FX, Robbins-Weilert DK, Ryder B, Liu WW, Perbost C, Fairchild M, De Leon J, Koch WH, Wedlund PJ (2003) Comparison of two CYP2D6 genotyping methods and assessment of genotype-phenotype relationships. Clin Chem 49:542–551

    CAS  PubMed  Google Scholar 

  • Christensen PM, Gotzsche PC, Brosen K (1997) The sparteine/debrisoquine (CYP2D6) oxidation polymorphism and the risk of lung cancer: a meta-analysis. Eur J Clin Pharmacol 51:389–393

    Article  CAS  PubMed  Google Scholar 

  • Christensen PM, Gotzsche PC, Brosen K (1998) The sparteine/debrisoquine (CYP2D6) oxidation polymorphism and the risk of Parkinson’s disease: a meta-analysis. Pharmacogenetics 8:473–479

    PubMed  Google Scholar 

  • Coller JK, Krebsfaenger N, Klein K, Endrizzi K, Wolbold R, Lang T, Nüssler A, Neuhaus P, Zanger UM, Eichelbaum M, Mürdter TE (2002) The influence of CYP2B6, CYP2C9 and CYP2D6 genotypes on the formation of the potent antioestrogen Z-4-hydroxy-tamoxifen in human liver. Br J Clin Pharmacol 54:157–167

    Article  CAS  PubMed  Google Scholar 

  • Dahl ML (2002) Cytochrome p450 phenotyping/genotyping in patients receiving antipsychotics: useful aid to prescribing? Clin Pharmacokinet 41:453–470

    CAS  PubMed  Google Scholar 

  • Dahl ML, Johansson I, Bertilsson L, Ingelman-Sundberg M, Sjoqvist F (1995a) Ultrarapid hydroxylation of debrisoquine in a Swedish population. Analysis of the molecular genetic basis. J Pharmacol Exp Ther 274:516–520

    CAS  PubMed  Google Scholar 

  • Dahl ML, Yue QY, Roh HK, Johansson I, Sawe J, Sjoqvist F, Bertilsson L (1995b) Genetic analysis of the CYP2D locus in relation to debrisoquine hydroxylation capacity in Korean, Japanese and Chinese subjects. Pharmacogenetics 5:159–164

    CAS  PubMed  Google Scholar 

  • Dalén P, Dahl ML, Ruiz ML, Nordin J, Bertilsson L (1998) 10-Hydroxylation of nortriptyline in white persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes. Clin Pharmacol Ther 63:444–452

    Google Scholar 

  • Daly AK (2003) Pharmacogenetics of the major polymorphic metabolizing enzymes. Fundam Clin Pharmacol 17:27–41

    Article  CAS  PubMed  Google Scholar 

  • Daly AK, Brockmoller J, Broly F, Eichelbaum M, Evans WE, Gonzalez FJ, Huang JD, Idle JR, Ingelman-Sundberg M, Ishizaki T, Jacqz-Aigrain E, Meyer UA, Nebert DW, Steen VM, Wolf CR, Zanger UM (1996a) Nomenclature for human CYP2D6 alleles. Pharmacogenetics 6:193–201

    CAS  PubMed  Google Scholar 

  • Daly AK, Fairbrother KS, Andreassen OA, London SJ, Idle JR, Steen VM (1996b) Characterization and PCR-based detection of two different hybrid CYP2D7P/CYP2D6 alleles associated with the poor metabolizer phenotype. Pharmacogenetics 6:319–328

    CAS  PubMed  Google Scholar 

  • Daly AK, Steen VM, Fairbrother KS, Idle JR (1996c) CYP2D6 multiallelism. Methods Enzymol 272:199–210

    CAS  PubMed  Google Scholar 

  • Dayer P, Balant L, Courvoisier F, Kupfer A, Kubli A, Gorgia A, Fabre J (1982) The genetic control of bufuralol metabolism in man. Eur J Drug Metab Pharmacokinet 7:73–77

    CAS  PubMed  Google Scholar 

  • Dayer P, Gasser R, Gut J, Kronbach T, Robertz GM, Eichelbaum M, Meyer UA (1984) Characterization of a common genetic defect of cytochrome P-450 function (debrisoquine-sparteine type polymorphism)—increased Michaelis Constant (Km) and loss of stereoselectivity of bufuralol 1’-hydroxylation in poor metabolizers. Biochem Biophys Res Commun 125:374–380

    CAS  PubMed  Google Scholar 

  • Dehal SS, Kupfer D (1997) CYP2D6 catalyzes tamoxifen 4-hydroxylation in human liver. Cancer Res 57:3402–3406

    CAS  PubMed  Google Scholar 

  • Distlerath LM, Reilly PE, Martin MV, Davis GG, Wilkinson GR, Guengerich FP (1985) Purification and characterization of the human liver cytochromes P-450 involved in debrisoquine 4-hydroxylation and phenacetin O-deethylation, two prototypes for genetic polymorphism in oxidative drug metabolism. J Biol Chem 260:9057–9067

    CAS  PubMed  Google Scholar 

  • Dunham I, Shimizu N, Roe BA, Chissoe S, Hunt AR, Collins JE et al (1999) The DNA sequence of human chromosome 22. Nature 402:489–495

    Article  CAS  PubMed  Google Scholar 

  • Eichelbaum M, Gross AS (1990) The genetic polymorphism of debrisoquine/sparteine metabolism—clinical aspects. Pharmacol Ther 46:377–394

    CAS  PubMed  Google Scholar 

  • Eichelbaum M, Woolhouse NM (1985) Inter-ethnic difference in sparteine oxidation among Ghanaians and Germans. Eur J Clin Pharmacol 28:79–83

    CAS  PubMed  Google Scholar 

  • Eichelbaum M, Spannbrucker N, Dengler HJ (1975) Lack of N-oxidation of sparteine in certain healthy subjects. Proceedings of the 6th International Congress of Pharmacology, Helsinki, July 20–25, p 1071

  • Eichelbaum M, Spannbrucker N, Steincke B, Dengler HJ (1979) Defective N-oxidation of sparteine in man: a new pharmacogenetic defect. Eur J Clin Pharmacol 16:183–187

    CAS  PubMed  Google Scholar 

  • Eichelbaum M, Bertilsson L, Sawe J, Zekorn C (1982) Polymorphic oxidation of sparteine and debrisoquine: related pharmacogenetic entities. Clin Pharmacol Ther 31:184–186

    CAS  PubMed  Google Scholar 

  • Eichelbaum M, Mineshita S, Ohnhaus EE, Zekorn C (1986) The influence of enzyme induction on polymorphic sparteine oxidation. Br J Clin Pharmacol 22:49–53

    CAS  PubMed  Google Scholar 

  • Eichelbaum M, Baur MP, Dengler HJ, Osikowska-Evers BO, Tieves G, Zekorn C, Rittner C (1987) Chromosomal assignment of human cytochrome P-450 (debrisoquine/sparteine type) to chromosome 22. Br J Clin Pharmacol 23:455–458

    CAS  PubMed  Google Scholar 

  • Ellis SW, Hayhurst GP, Smith G, Lightfoot T, Wong MM, Simula AP, Ackland MJ, Sternberg MJ, Lennard MS, Tucker GT et al (1995) Evidence that aspartic acid 301 is a critical substrate-contact residue in the active site of cytochrome P450 2D6. J Biol Chem 270:29055–29058

    Article  CAS  PubMed  Google Scholar 

  • Endrizzi K, Fischer J, Klein K, Schwab M, Nüssler AC, Neuhaus P, Eichelbaum M, Zanger UM (2002) Discriminative quantification of CYP2D6 and CYP2D7/8 pseudogene mRNA by TaqMan real-time reverse transcriptase-PCR in human liver. Anal Biochem 300:121–131

    Article  CAS  PubMed  Google Scholar 

  • Evans WE, Relling MV (1999) Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286:487–491

    Article  CAS  PubMed  Google Scholar 

  • Evans WE, Relling MV, Petros WP, Meyer WH, Mirro J Jr, Crom WR (1989) Dextromethorphan and caffeine as probes for simultaneous determination of debrisoquin-oxidation and N-acetylation phenotypes in children. Clin Pharmacol Ther 45:568–573

    CAS  PubMed  Google Scholar 

  • Evert B, Eichelbaum M, Haubruck H, Zanger UM (1997) Functional properties of CYP2D6 1 (wild-type) and CYP2D6 7 (His324Pro) Expressed by recombinant baculovirus in insect cells. Naunyn-Schmiedebergs Arch Pharmacol 355:309–318

    Google Scholar 

  • Fonne-Pfister R, Bargetzi MJ, Meyer UA (1987) MPTP, the neurotoxin inducing Parkinson’s disease, is a potent competitive inhibitor of human and rat cytochrome P450 isozymes (P450bufI, P450db1) catalyzing debrisoquine 4-hydroxylation. Biochem Biophys Res Commun 148:1144–1150

    CAS  PubMed  Google Scholar 

  • Fukuda T, Nishida Y, Imaoka S, Hiroi T, Naohara M, Funae Y, Azuma J (2000) The decreased in vivo clearance of CYP2D6 substrates by CYP2D6*10 might be caused not only by the low-expression but also by low affinity of CYP2D6. Arch Biochem Biophys 380:303–308

    Article  CAS  PubMed  Google Scholar 

  • Gaedigk A, Blum M, Gaedigk R, Eichelbaum M, Meyer UA (1991) Deletion of the entire cytochrome P450 CYP2D6 gene as a cause of impaired drug metabolism in poor metabolizers of the debrisoquine/sparteine polymorphism. Am J Hum Genet 48:943–950

    CAS  PubMed  Google Scholar 

  • Gaedigk A, Gotschall RR, Forbes NS, Simon SD, Kearns GL, Leeder JS (1999) Optimization of cytochrome P4502D6 (CYP2D6) phenotype assignment using a genotyping algorithm based on allele frequency data [in process citation]. Pharmacogenetics 9:669–682

    CAS  PubMed  Google Scholar 

  • Gilham DE, Cairns W, Paine MJ, Modi S, Poulsom R, Roberts GC, Wolf CR (1997) Metabolism of MPTP by cytochrome P4502D6 and the demonstration of 2D6 mRNA in human foetal and adult brain by in situ hybridization. Xenobiotica 27:111–125

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez FJ, Skoda RC, Kimura S, Umeno M, Zanger UM, Nebert DW, Gelboin HV, Hardwick JP, Meyer UA (1988a) Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature 331:442–446

    CAS  PubMed  Google Scholar 

  • Gonzalez FJ, Vilbois F, Hardwick JP, McBride OW, Nebert DW, Gelboin HV, Meyer UA (1988b) Human debrisoquine 4-hydroxylase (P450IID1): cDNA and deduced amino acid sequence and assignment of the CYP2D locus to chromosome 22. Genomics 2:174–179

    CAS  PubMed  Google Scholar 

  • Gough AC, Miles JS, Spurr NK, Moss JE, Gaedigk A, Eichelbaum M, Wolf CR (1990) Identification of the primary gene defect at the cytochrome P450 CYP2D locus. Nature 347:773–776

    CAS  PubMed  Google Scholar 

  • Gram LF, Brosen K (1993) Moclobemide treatment causes a substantial rise in the sparteine metabolic ratio. Danish University Antidepressant Group. Br J Clin Pharmacol 35:649–652

    CAS  PubMed  Google Scholar 

  • Griese EU, Zanger UM, Brudermanns U, Gaedigk A, Mikus G, Morike K, Stüven T, Eichelbaum M (1998) Assessment of the predictive power of genotypes for the in-vivo catalytic function of CYP2D6 in a German population. Pharmacogenetics 8:15–26

    CAS  PubMed  Google Scholar 

  • Griese EU, Asante-Poku S, Ofori-Adjei D, Mikus G, Eichelbaum M (1999) Analysis of the CYP2D6 gene mutations and their consequences for enzyme function in a West African population [in process citation]. Pharmacogenetics 9:715–723

    CAS  PubMed  Google Scholar 

  • Griese EU, Ilett KF, Kitteringham NR, Eichelbaum M, Powell H, Spargo RM, LeSouef PN, Musk AW, Minchin RF (2001) Allele and genotype frequencies of polymorphic cytochromes P4502D6, 2C19 and 2E1 in aborigines from western Australia. Pharmacogenetics 11:69–76

    Article  CAS  PubMed  Google Scholar 

  • Guengerich FP, Miller GP, Hanna IH, Martin MV, Leger S, Black C, Chauret N, Silva JM, Trimble LA, Yergey JA, Nicoll-Griffith DA (2002) Diversity in the oxidation of substrates by cytochrome P450 2D6: lack of an obligatory role of aspartate 301-substrate electrostatic bonding. Biochemistry 41:11025–11034

    Article  CAS  PubMed  Google Scholar 

  • Guengerich FP, Hanna IH, Martin MV, Gillam EM (2003) Role of glutamic acid 216 in cytochrome P450 2D6 substrate binding and catalysis. Biochemistry 42:1245–1253

    Article  CAS  PubMed  Google Scholar 

  • Guidice JM, Marez D, Sabbagh N, Legrand-Andreoletti M, Spire C, Alcaide E, Lafitte JJ, Broly F (1997) Evidence for CYP2D6 expression in human lung. Biochem Biophys Res Commun 241:79–85

    Article  CAS  PubMed  Google Scholar 

  • Gut J, Catin T, Dayer P, Kronbach T, Zanger U, Meyer UA (1986) Debrisoquine/sparteine-type polymorphism of drug oxidation. Purification and characterization of two functionally different human liver cytochrome P-450 isozymes involved in impaired hydroxylation of the prototype substrate bufuralol. J Biol Chem 261:11734–11743

    CAS  PubMed  Google Scholar 

  • Haefeli WE, Bargetzi MJ, Follath F, Meyer UA (1990) Potent inhibition of cytochrome P450IID6 (debrisoquin 4-hydroxylase) by flecainide in vitro and in vivo. J Cardiovasc Pharmacol 15:776–779

    CAS  PubMed  Google Scholar 

  • Hanioka N, Kimura S, Meyer UA, Gonzalez FJ (1990) The human CYP2D locus associated with a common genetic defect in drug oxidation: a G1934-A base change in intron 3 of a mutant CYP2D6 allele results in an aberrant 3’ splice recognition site. Am J Hum Genet 47:994–1001

    CAS  PubMed  Google Scholar 

  • Heim M, Meyer UA (1990) Genotyping of poor metabolisers of debrisoquine by allele-specific PCR amplification. Lancet 336:529–532

    CAS  PubMed  Google Scholar 

  • Hiratsuka M, Agatsuma Y, Omori F, Narahara K, Inoue T, Kishikawa Y, Mizugaki M (2000) High throughput detection of drug-metabolizing enzyme polymorphisms by allele-specific fluorogenic 5’ nuclease chain reaction assay. Biol Pharm Bull 23:1131–1135

    CAS  PubMed  Google Scholar 

  • Hiroi T, Imaoka S, Funae Y (1998) Dopamine formation from tyramine by CYP2D6. Biochem Biophys Res Commun 249:838–843

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Fasco MJ, Kaminsky LS (1997) Alternative splicing of CYP2D mRNA in human breast tissue. Arch Biochem Biophys 343:101–108

    Article  PubMed  Google Scholar 

  • Idle JR, Corchero J, Gonzalez FJ (2000) Medical implications of HGP’s sequence of chromosome 22. Lancet 355:319

    CAS  Google Scholar 

  • Ingelman-Sundberg M (1999) Duplication, multiduplication, and amplification of genes encoding drug-metabolizing enzymes: evolutionary, toxicological, and clinical pharmacological aspects. Drug Metab Rev 31:449–459

    Article  CAS  PubMed  Google Scholar 

  • Ingelman-Sundberg M, Oscarson M (2002) Human CYP allele database: submission criteria procedures and objectives. Methods Enzymol 357:28–36

    CAS  PubMed  Google Scholar 

  • Ingelman-Sundberg M, Daly AK, Oscarson M, Nebert DW (2000) Human cytochrome P450 (CYP) genes: recommendations for the nomenclature of alleles. Pharmacogenetics 10:91–93

    Article  CAS  PubMed  Google Scholar 

  • Jackson PR, Tucker GT, Lennard MS, Woods HF (1986) Polymorphic drug oxidation: pharmacokinetic basis and comparison of experimental indices. Br J Clin Pharmacol 22:541–550

    CAS  PubMed  Google Scholar 

  • Johansson I, Lundqvist E, Bertilsson L, Dahl ML, Sjoqvist F, Ingelman-Sundberg M (1993) Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc Natl Acad Sci USA 90:11825–11829

    CAS  PubMed  Google Scholar 

  • Johansson I, Oscarson M, Yue QY, Bertilsson L, Sjoqvist F, Ingelman-Sundberg M (1994) Genetic analysis of the Chinese cytochrome P4502D locus: characterization of variant CYP2D6 genes present in subjects with diminished capacity for debrisoquine hydroxylation. Mol Pharmacol 46:452–459

    CAS  PubMed  Google Scholar 

  • Johansson I, Lundqvist E, Dahl ML, Ingelman-Sundberg M (1996) PCR-based genotyping for duplicated and deleted CYP2D6 genes. Pharmacogenetics 6:351–355

    CAS  Google Scholar 

  • Kagimoto M, Heim M, Kagimoto K, Zeugin T, Meyer UA (1990) Multiple mutations of the human cytochrome P450IID6 gene (CYP2D6) in poor metabolizers of debrisoquine. Study of the functional significance of individual mutations by expression of chimeric genes. J Biol Chem 265:17209–17214

    CAS  PubMed  Google Scholar 

  • Kahn GC, Boobis AR, Murray S, Brodie MJ, Davies DS (1982) Assay and characterisation of debrisoquine 4-hydroxylase activity of microsomal fractions of human liver. Br J Clin Pharmacol 13:637–645

    CAS  PubMed  Google Scholar 

  • Kaiser R, Sezer O, Papies A, Bauer S, Schelenz C, Tremblay PB, Possinger K, Roots I, Brockmoller J (2002) Patient-tailored antiemetic treatment with 5-hydroxytryptamine type 3 receptor antagonists according to cytochrome P-450 2D6 genotypes. J Clin Oncol 20:2805–2811

    Article  CAS  PubMed  Google Scholar 

  • Kimura S, Umeno M, Skoda RC, Meyer UA, Gonzalez FJ (1989) The human debrisoquine 4-hydroxylase (CYP2D) locus: sequence and identification of the polymorphic CYP2D6 gene, a related gene, and a pseudogene. Am J Hum Genet 45:889–904

    Google Scholar 

  • Kirchheiner J, Brosen K, Dahl ML, Gram LF, Kasper S, Roots I, Sjoqvist F, Spina E, Brockmoller J (2001) CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages. Acta Psychiatr Scand 104:173–192

    CAS  PubMed  Google Scholar 

  • Kivistö KT, Kroemer HK (1997) Use of probe drugs as predictors of drug metabolism in humans. J Clin Pharmacol 37:40S–48S

    Google Scholar 

  • Kivistö KT, Griese EU, Stüven T, Fritz P, Friedel G, Kroemer HK, Zanger UM (1997) Analysis of CYP2D6 expression in human lung: implications for the association between CYP2D6 activity and susceptibility to lung cancer. Pharmacogenetics 7:295–302

    PubMed  Google Scholar 

  • Koymans L, Vermeulen NP, van Acker SA, te Koppele JM, Heykants JJ, Lavrijsen K, Meuldermans W, Donne-Op den Kelder GM (1992) A predictive model for substrates of cytochrome P450-debrisoquine (2D6). Chem Res Toxicol 5:211–219

    CAS  PubMed  Google Scholar 

  • Kroemer HK, Mikus G, Kronbach T, Meyer UA, Eichelbaum M (1989) In vitro characterization of the human cytochrome P-450 involved in polymorphic oxidation of propafenone. Clin Pharmacol Ther 45:28–33

    CAS  PubMed  Google Scholar 

  • Kronbach T (1991) Bufuralol, dextromethorphan, and debrisoquine as prototype substrates for human P450IID6. Methods Enzymol 206:509–517

    CAS  PubMed  Google Scholar 

  • Landi MT, Ceroni M, Martignoni E, Bertazzi PA, Caporaso NE, Nappi G (1996) Gene-environment interaction in Parkinson’s disease. The case of CYP2D6 gene polymorphism. Adv Neurol 69:61–72

    CAS  PubMed  Google Scholar 

  • Leathart JB, London SJ, Steward A, Adams JD, Idle JR, Daly AK (1998) CYP2D6 phenotype-genotype relationships in African-Americans and Caucasians in Los Angeles. Pharmacogenetics 8:529–541

    CAS  PubMed  Google Scholar 

  • Lennard MS, Silas JH, Freestone S, Ramsay LE, Tucker GT, Woods HF (1982) Oxidation phenotype—a major determinant of metoprolol metabolism and response. N Engl J Med 307:1558–1560

    CAS  PubMed  Google Scholar 

  • Løvlie R, Daly AK, Molven A, Idle JR, Steen VM (1996) Ultrarapid metabolizers of debrisoquine: characterization and PCR-based detection of alleles with duplication of the CYP2D6 gene. FEBS Lett 392:30–34

    CAS  PubMed  Google Scholar 

  • Løvlie R, Daly AK, Matre GE, Molven A, Steen VM (2001) Polymorphisms in CYP2D6 duplication-negative individuals with the ultrarapid metabolizer phenotype: a role for the CYP2D6*35 allele in ultrarapid metabolism? Pharmacogenetics 11:45–55

    Article  CAS  PubMed  Google Scholar 

  • Lundqvist E, Johansson I, Ingelman-Sundberg M (1999) Genetic mechanisms for duplication and multiduplication of the human CYP2D6 gene and methods for detection of duplicated CYP2D6 genes. Gene 226:327–338

    CAS  PubMed  Google Scholar 

  • Madani S, Paine MF, Lewis L, Thummel KE, Shen DD (1999) Comparison of CYP2D6 content and metoprolol oxidation between microsomes isolated from human livers and small intestines. Pharm Res 16:1199–1205

    Article  CAS  PubMed  Google Scholar 

  • Mahgoub A, Idle JR, Dring LG, Lancaster R, Smith RL (1977) Polymorphic hydroxylation of debrisoquine in man. Lancet 2:584–256

    CAS  PubMed  Google Scholar 

  • Marez D, Legrand M, Sabbagh N, Guidice JM, Spire C, Lafitte JJ, Meyer UA, Broly F (1997) Polymorphism of the cytochrome P450 CYP2D6 gene in a European population: characterization of 48 mutations and 53 alleles, their frequencies and evolution. Pharmacogenetics 7:193–202

    CAS  PubMed  Google Scholar 

  • Martinez C, Agundez JA, Gervasini G, Martin R, Benitez J (1997) Tryptamine: a possible endogenous substrate for CYP2D6. Pharmacogenetics 7:85–93

    CAS  PubMed  Google Scholar 

  • Masimirembwa C, Hasler J, Bertilssons L, Johansson I, Ekberg O, Ingelman-Sundberg M (1996) Phenotype and genotype analysis of debrisoquine hydroxylase (CYP2D6) in a black Zimbabwean population. Reduced enzyme activity and evaluation of metabolic correlation of CYP2D6 probe drugs. Eur J Clin Pharmacol 51:117–122

    Google Scholar 

  • McLellan RA, Oscarson M, Seidegard J, Evans DA, Ingelman-Sundberg M (1997) Frequent occurrence of CYP2D6 gene duplication in Saudi Arabians. Pharmacogenetics 7:187–191

    Google Scholar 

  • Meyer UA (2000) Pharmacogenetics and adverse drug reactions. Lancet 356:1667–1671

    Article  CAS  PubMed  Google Scholar 

  • Meyer UA, Zanger UM (1997) Molecular mechanisms of genetic polymorphisms of drug metabolism. Annu Rev Pharmacol Toxicol 37:269–296

    CAS  PubMed  Google Scholar 

  • Miksys S, Rao Y, Hoffmann E, Mash DC, Tyndale RF (2002) Regional and cellular expression of CYP2D6 in human brain: higher levels in alcoholics. J Neurochem 82:1376–1387

    Article  CAS  PubMed  Google Scholar 

  • Molden E, Johansen PW, Boe GH, Bergan S, Christensen H, Rugstad HE, Rootwelt H, Reubsaet L, Lehne G (2002) Pharmacokinetics of diltiazem and its metabolites in relation to CYP2D6 genotype. Clin Pharmacol Ther 72:333–342

    Google Scholar 

  • Murphy GM Jr, Pollock BG, Kirshner MA, Pascoe N, Cheuk W, Mulsant BH, Reynolds CF III (2001) CYP2D6 genotyping with oligonucleotide microarrays and nortriptyline concentrations in geriatric depression. Neuropsychopharmacology 25:737–743

    Article  CAS  PubMed  Google Scholar 

  • Oscarson M, Hidestrand M, Johansson I, Ingelman-Sundberg M (1997) A combination of mutations in the CYP2D6*17 (CYP2D6Z) allele causes alterations in enzyme function. Mol Pharmacol 52:1034–1040

    CAS  PubMed  Google Scholar 

  • Paine MJ, McLaughlin LA, Flanagan JU, Kemp CA, Sutcliffe MJ, Roberts GC, Wolf CR (2003) Residues glutamate 216 and aspartate 301 are key determinants of substrate specificity and product regioselectivity in cytochrome P450 2D6. J Biol Chem 278:4021–4027

    Article  CAS  PubMed  Google Scholar 

  • Prueksaritanont T, Dwyer LM, Cribb AE (1995) (+)-Bufuralol 1’-hydroxylation activity in human and rhesus monkey intestine and liver. Biochem Pharmacol 50:1521–1525

    Article  CAS  PubMed  Google Scholar 

  • Raimundo S, Fischer J, Eichelbaum M, Griese EU, Schwab M, Zanger UM (2000) Elucidation of the genetic basis of the common ‘intermediate metabolizer’ phenotype for drug oxidation by CYP2D6. Pharmacogenetics 10:577–581

    CAS  PubMed  Google Scholar 

  • Raimundo S, Fischer J, Eichelbaum M, Schwab M, Zanger UM (2003) A novel intronic SNP (2988 G>A) directly identifies the common “intermediate metabolizer” allele CYP2D6*41 (submitted).

  • Rau T, Heide R, Bergmann K, Wuttke H, Werner U, Feifel N, Eschenhagen T (2002) Effect of the CYP2D6 genotype on metoprolol metabolism persists during long-term treatment. Pharmacogenetics 12:465–472

    Article  CAS  PubMed  Google Scholar 

  • Raunio H, Hakkola J, Hukkanen J, Pelkonen O, Edwards R, Boobis A, Anttila S (1998) Expression of xenobiotic-metabolizing cytochrome P450s in human pulmonary tissues. Arch Toxicol Suppl 20:465–469

    CAS  PubMed  Google Scholar 

  • Romkes-Sparks M, Mnuskin A, Chern HD, Persad R, Fleming C, Sibley GN, Smith P, Wilkinson GR, Branch RA (1994) Correlation of polymorphic expression of CYP2D6 mRNA in bladder mucosa and tumor tissue to in vivo debrisoquine hydroxylase activity. Carcinogenesis 15:1955–1961

    CAS  PubMed  Google Scholar 

  • Roots I, Brockmoller J, Drakoulis N, Loddenkemper R (1992) Mutant genes of cytochrome P-450IID6, glutathione S-transferase class Mu, and arylamine N-acetyltransferase in lung cancer patients. Clin Invest 70:307–319

    CAS  Google Scholar 

  • Rostami-Hodjegan A, Lennard MS, Woods HF, Tucker GT (1998) Meta-analysis of studies of the CYP2D6 polymorphism in relation to lung cancer and Parkinson’s disease. Pharmacogenetics 8:227–238

    CAS  PubMed  Google Scholar 

  • Sachse C, Brockmoller J, Bauer S, Roots I (1997) Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 60:284–295

    Google Scholar 

  • Schaeffeler E, Schwab M, Eichelbaum M, Zanger M (2003) CYP2D6 genotyping strategy based on gene copy number determination by TaqMan real-time PCR. Hum Mutat (in press)

  • Schmid B, Bircher J, Preisig R, Kupfer A (1985) Polymorphic dextromethorphan metabolism: co-segregation of oxidative O-demethylation with debrisoquin hydroxylation. Clin Pharmacol Ther 38:618–624

    CAS  PubMed  Google Scholar 

  • Shin JG, Soukhova N, Flockhart DA (1999) Effect of antipsychotic drugs on human liver cytochrome P-450 (CYP) isoforms in vitro: preferential inhibition of CYP2D6. Drug Metab Dispos 27:1078–1084

    CAS  PubMed  Google Scholar 

  • Siegle I, Fritz P, Eckhardt K, Zanger UM, Eichelbaum M (2001) Cellular localization and regional distribution of CYP2D6 mRNA and protein expression in human brain. Pharmacogenetics 11:237–245

    Article  CAS  PubMed  Google Scholar 

  • Sindrup SH, Brosen K, Gram LF, Hallas J, Skjelbo E, Allen A, Allen GD, Cooper SM, Mellows G, Tasker TC et al (1992) The relationship between paroxetine and the sparteine oxidation polymorphism. Clin Pharmacol Ther 51:278–287

    Google Scholar 

  • Skoda RC, Gonzalez FJ, Demierre A, Meyer UA (1988) Two mutant alleles of the human cytochrome P-450db1 gene (P450C2D1) associated with genetically deficient metabolism of debrisoquine and other drugs. Proc Natl Acad Sci USA 85:5240–5243

    CAS  PubMed  Google Scholar 

  • Spina E, Gitto C, Avenoso A, Campo GM, Caputi AP, Perucca E (1997) Relationship between plasma desipramine levels, CYP2D6 phenotype and clinical response to desipramine: a prospective study. Eur J Clin Pharmacol 51:395–398

    Article  CAS  PubMed  Google Scholar 

  • Steen VM, Molven A, Aarskog NK, Gulbrandsen AK (1995) Homologous unequal cross-over involving a 2.8 kb direct repeat as a mechanism for the generation of allelic variants of human cytochrome P450 CYP2D6 gene. Hum Mol Genet 4:2251–2257

    CAS  PubMed  Google Scholar 

  • Steiner E, Iselius L, Alvan G, Lindsten J, Sjoqvist F (1985) A family study of genetic and environmental factors determining polymorphic hydroxylation of debrisoquin. Clin Pharmacol Ther 38:394–401

    Google Scholar 

  • Steiner E, Bertilsson L, Sawe J, Bertling I, Sjoqvist F (1988) Polymorphic debrisoquin hydroxylation in 757 Swedish subjects. Clin Pharmacol Ther 44:431–435

    CAS  PubMed  Google Scholar 

  • Stüven T, Griese EU, Kroemer HK, Eichelbaum M, Zanger UM (1996) Rapid detection of CYP2D6 null alleles by long distance- and multiplex-polymerase chain reaction. Pharmacogenetics 6:417–421

    PubMed  Google Scholar 

  • Syvalahti EK, Lindberg R, Kallio J, De Vocht M (1986) Inhibitory effects of neuroleptics on debrisoquine oxidation in man. Br J Clin Pharmacol 22:89–92

    CAS  PubMed  Google Scholar 

  • Thum T, Borlak J (2000) Gene expression in distinct regions of the heart. Lancet 355:979–983

    CAS  PubMed  Google Scholar 

  • Tyndale R, Aoyama T, Broly F, Matsunaga T, Inaba T, Kalow W, Gelboin HV, Meyer UA, Gonzalez FJ (1991) Identification of a new variant CYP2D6 allele lacking the codon encoding Lys-281: possible association with the poor metabolizer phenotype. Pharmacogenetics 1:26–32

    CAS  PubMed  Google Scholar 

  • Vandel S, Bertschy G, Baumann P, Bouquet S, Bonin B, Francois T, Sechter D, Bizouard P (1995) Fluvoxamine and fluoxetine: interaction studies with amitriptyline, clomipramine and neuroleptics in phenotyped patients. Pharmacol Res 31:347–353

    Article  CAS  PubMed  Google Scholar 

  • Voirol P, Jonzier-Perey M, Porchet F, Reymond MJ, Janzer RC, Bouras C, Strobel HW, Kosel M, Eap CB, Baumann P (2000) Cytochrome P-450 activities in human and rat brain microsomes. Brain Res 855:235–243

    Article  CAS  PubMed  Google Scholar 

  • Wang SL, Huang JD, Lai MD, Liu BH, Lai ML (1993) Molecular basis of genetic variation in debrisoquin hydroxylation in Chinese subjects: polymorphism in RFLP and DNA sequence of CYP2D6. Clin Pharmacol Ther 53:410–418

    Google Scholar 

  • Williams PA, Cosme J, Ward A, Angove HC, Matak Vinkovic D, Jhoti H (2003) Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature (London) 424:464–468

    Google Scholar 

  • Wolff T, Distlerath LM, Worthington MT, Groopman JD, Hammons GJ, Kadlubar FF, Prough RA, Martin MV, Guengerich FP (1985) Substrate specificity of human liver cytochrome P-450 debrisoquine 4-hydroxylase probed using immunochemical inhibition and chemical modeling. Cancer Res 45:2116–2122

    CAS  PubMed  Google Scholar 

  • Wuttke H, Rau T, Heide R, Bergmann K, Bohm M, Weil J, Werner D, Eschenhagen T (2002) Increased frequency of cytochrome P450 2D6 poor metabolizers among patients with metoprolol-associated adverse effects. Clin Pharmacol Ther 72:429–437

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki S, Sato K, Suhara K, Sakaguchi M, Mihara K, Omura T (1993) Importance of the proline-rich region following signal-anchor sequence in the formation of correct conformation of microsomal cytochrome P-450s. J Biochem (Tokyo) 114:652–657

    Google Scholar 

  • Yokota H, Tamura S, Furuya H, Kimura S, Watanabe M, Kanazawa I, Kondo I, Gonzalez FJ (1993) Evidence for a new variant CYP2D6 allele CYP2D6 J in a Japanese population associated with lower in vivo rates of sparteine metabolism. Pharmacogenetics 3:256–263

    Google Scholar 

  • Yu A, Kneller BM, Rettie AE, Haining RL (2002) Expression, purification, biochemical characterization, and comparative function of human cytochrome P450 2D6.1, 2D6.2, 2D6.10, and 2D6.17 allelic isoforms. J Pharmacol Exp Ther 303:1291–1300

    Article  CAS  PubMed  Google Scholar 

  • Yu AM, Idle JR, Byrd LG, Krausz KW, Kupfer A, Gonzalez FJ (2003a) Regeneration of serotonin from 5-methoxytryptamine by polymorphic human CYP2D6. Pharmacogenetics 13:173–181

    Article  CAS  PubMed  Google Scholar 

  • Yu AM, Idle JR, Herraiz T, Kupfer A, Gonzalez FJ (2003b) Screening for endogenous substrates reveals that CYP2D6 is a 5-methoxyindolethylamine O-demethylase. Pharmacogenetics 13:307–319

    Article  CAS  PubMed  Google Scholar 

  • Zanger UM, Vilbois F, Hardwick JP, Meyer UA (1988a) Absence of hepatic cytochrome P450bufI causes genetically deficient debrisoquine oxidation in man. Biochemistry 27:5447–5454

    CAS  PubMed  Google Scholar 

  • Zanger UM, Hauri HP, Loeper J, Homberg JC, Meyer UA (1988b) Antibodies against human cytochrome P-450db1 in autoimmune hepatitis type II. Proc Natl Acad Sci USA 85:8256–8260

    CAS  PubMed  Google Scholar 

  • Zanger UM, Fischer J, Raimundo S, Stüven T, Evert BO, Schwab M, Eichelbaum M (2001) Comprehensive analysis of the genetic factors determining expression and function of hepatic CYP2D6. Pharmacogenetics 11:573–585

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant 01 GG 9846 from the German Federal Ministry of Education and Science and by the Robert Bosch Foundation, Stuttgart, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich M. Zanger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanger, U.M., Raimundo, S. & Eichelbaum, M. Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn-Schmiedeberg's Arch Pharmacol 369, 23–37 (2004). https://doi.org/10.1007/s00210-003-0832-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-003-0832-2

Keywords

Navigation