Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antiresorptive therapies for osteoporosis: a clinical overview

Abstract

Antiresorptive therapies are used to increase bone strength in individuals with osteoporosis and include five principal classes of agents: bisphosphonates, estrogens, selective estrogen receptor modulators (SERMs), calcitonin and monoclonal antibodies such as denosumab. However, no head-to-head studies have compared different antiresorptive agents using fracture as an end point. Bisphosphonates, which have proven antifracture efficacy and a good safety profile, are the most widely used first-line antiresorptive therapy and are recommended for patients with osteoporosis, a prior fragility fracture or osteopenia, as well as individuals with a high risk of fracture. Denosumab, which also has good antifracture efficacy, is another possible first-line therapy, although long-term safety data are lacking. However, no single antiresorptive therapy is currently appropriate for all patients or clearly superior to other therapies. Antiresorptive agents such as estrogens, SERMs (in postmenopausal women) and calcitonin are considered to be second-line agents that are appropriate in special circumstances. Clinicians should determine the most appropriate pharmacological therapy after a careful assessment of the risk:benefit profiles of these drugs in each patient. In addition, patients should receive a detailed explanation of the treatment goals, so that the therapeutic benefit can be maximized through good compliance and persistence.

Key Points

  • Several antiresorptive agents can safely reduce fracture risk in various high-risk populations

  • Bisphosphonates or denosumab should be recommended as first-line therapy for patients with osteoporosis

  • Selective estrogen receptor modulators (SERMs) are currently not used as first-line therapy except, occasionally, in postmenopausal women aged <60 years who have a moderately increased fracture risk

  • Short-term, low-dose estrogen treatment can be considered in newly postmenopausal women aged <60 years who also have menopausal symptoms

  • Given its limited antifracture efficacy, calcitonin is only recommended in some circumstances, such as in patients who are unable to take other agents

  • Selection of the most appropriate therapy for a specific patient should take into account relevant factors such as adverse effects, dosing regimen, cost and the patient's preference

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Melton, L. J. III . How many women have osteoporosis now? J. Bone Miner. Res. 10, 175–177 (1995).

    Article  PubMed  Google Scholar 

  2. Vestergaard, P., Rejnmark, L. & Mosekilde, L. Osteoporosis is markedly underdiagnosed: a nationwide study from Denmark. Osteoporos. Int. 16, 134–141 (2005).

    Article  PubMed  Google Scholar 

  3. Johnell, O. & Kanis, J. A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int. 17, 1726–1733 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. The prevention and management of osteoporosis consensus statement. The Medical Journal of Australia [online], (1997).

  5. Cameron, I. D. et al. Hip fracture causes excess mortality owing to cardiovascular and infectious disease in institutionalized older people: a prospective 5-year study. J. Bone Miner. Res. 25, 866–872 (2010).

    PubMed  Google Scholar 

  6. Center, J. R., Bliuc, D., Nguyen, T. V. & Eisman, J. A. Risk of subsequent fracture after low-trauma fracture in men and women. JAMA 297, 387–394 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Johnell, O. et al. Fracture risk following an osteoporotic fracture. Osteoporos. Int. 15, 175–179 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Chen, J. et al. Low-trauma fractures indicate increased risk of hip fracture in frail older people. J. Bone Miner. Res. 26, 428–433 (2010).

    Article  Google Scholar 

  9. Chen, J. S., Hogan, C., Lyubomirsky, G. & Sambrook, P. N. Management of osteoporosis in primary care in Australia. Osteoporos. Int. 20, 491–496 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Kok, C. & Sambrook, P. N. Secondary osteoporosis in patients with an osteoporotic fracture. Best Pract. Res. Clin. Rheum. 23, 769–779 (2009).

    Article  CAS  Google Scholar 

  11. Cummings, S. R. et al. Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N. Engl. J. Med. 332, 767–773 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Huang, A. J. et al. Endogenous estrogen levels and the effects of ultra-low-dose transdermal estradiol therapy on bone turnover and BMD in postmenopausal women. J. Bone Miner. Res. 22, 1791–1797 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Rosen, C. J. Clinical practice. Postmenopausal osteoporosis. N. Engl. J. Med. 353, 595–603 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Black, D. M. et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N. Engl. J. Med. 356, 1809–1822 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Ensrud, K. E. et al. Effects of raloxifene on fracture risk in postmenopausal women: the Raloxifene Use for the Heart Trial. J. Bone Miner. Res. 23, 112–120 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Wells, G. A. et al. Etidronate for the primary and secondary prevention of osteoporotic fractures in postmenopausal women. Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD003376 doi:10.1002/14651858.CD003376.pub3 (2008).

  17. Wells, G. A. et al. Risedronate for the primary and secondary prevention of osteoporotic fractures in postmenopausal women. Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD004523 doi:10.1002/14651858.CD004523.pub3 (2008).

  18. Wells, G. A. et al. Alendronate for the primary and secondary prevention of osteoporotic fractures in postmenopausal women. Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD001155 doi:10.1002/14651858.CD001155.pub2 (2008).

  19. Orwoll, E. et al. Alendronate for the treatment of osteoporosis in men. N. Engl. J. Med. 343, 604–610 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Ringe, J. D., Faber, H. & Dorst, A. Alendronate treatment of established primary osteoporosis in men: results of a 2-year prospective study. J. Clin. Endocrinol. Metab. 86, 5252–5255 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Sato, Y., Iwamoto, J., Kanoko, T. & Satoh, K. Risedronate sodium therapy for prevention of hip fracture in men 65 years or older after stroke. Arch. Intern. Med. 165, 1743–1748 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Taylor, J. C. et al. Opinions and experiences in general practice on osteoporosis prevention, diagnosis and management. Osteoporos. Int. 12, 844–848 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Jaglal, S. B. et al. How are family physicians managing osteoporosis? Qualitative study of their experiences and educational needs. Can. Fam. Physician 49, 462–468 (2003).

    PubMed  PubMed Central  Google Scholar 

  24. Rossouw, J. E. et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative randomized controlled trial. JAMA 288, 321–333 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Recker, R. R. et al. Comparative effects of teriparatide and strontium ranelate on bone biopsies and biochemical markers of bone turnover in postmenopausal women with osteoporosis. J. Bone Miner. Res. 24, 1358–1368 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Hosking, D. et al. Prevention of bone loss with alendronate in postmenopausal women under 60 years of age. Early Postmenopausal Intervention Cohort Study Group. N. Engl. J. Med. 338, 485–492 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Siris, E. S. et al. Skeletal effects of raloxifene after 8 years: results from the continuing outcomes relevant to Evista (CORE) study. J. Bone Miner. Res. 20, 1514–1524 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Cummings, S. R. et al. Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am. J. Med. 112, 281–289 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Russell, R. G., Watts, N. B., Ebetino, F. H. & Rogers, M. J. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos. Int. 19, 733–759 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Vestergaard, P., Mosekilde, L. & Langdahl, B. Fracture prevention in postmenopausal women. Clin. Evid. (Online) 2011, pii: 1109 (2011).

    Google Scholar 

  31. Rahmani, P. & Morin, S. Prevention of osteoporosis-related fractures among postmenopausal women and older men. CMAJ 181, 815–820 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chesnut, C. H. III . et al. Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J. Bone Miner. Res. 19, 1241–1249 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Cranney, A. et al. Ibandronate for the prevention of nonvertebral fractures: a pooled analysis of individual patient data. Osteoporos. Int. 20, 291–297 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. McCloskey, E. et al. Clodronate reduces vertebral fracture risk in women with postmenopausal or secondary osteoporosis: results of a double-blind, placebo-controlled 3-year study. J. Bone Miner. Res. 19, 728–736 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. McCloskey, E. V. et al. Clodronate reduces the incidence of fractures in community-dwelling elderly women unselected for osteoporosis: results of a double-blind, placebo-controlled randomized study. J. Bone Miner. Res. 22, 135–141 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Green, J. et al. Oral bisphosphonates and risk of cancer of oesophagus, stomach, and colorectum: case–control analysis within a UK primary care cohort. BMJ 341, c4444 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Khosla, S. et al. Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for Bone and Mineral. Research. J. Bone Miner. Res. 22, 1479–1491 (2007).

    Article  PubMed  Google Scholar 

  38. Cartsos, V. M., Zhu, S. & Zavras, A. I. Bisphosphonate use and the risk of adverse jaw outcomes: a medical claims study of 714,217 people. J. Am. Dent. Assoc. 139, 23–30 (2008).

    Article  PubMed  Google Scholar 

  39. Bhuriya, R., Singh, M., Molnar, J., Arora, R. & Khosla, S. Bisphosphonate use in women and the risk of atrial fibrillation: a systematic review and meta-analysis. Int. J. Cardiol. 142, 213–217 (2010).

    Article  PubMed  Google Scholar 

  40. Mak, A., Cheung, M. W., Ho, R. C., Cheak, A. A. & Lau, C. S. Bisphosphonates and atrial fibrillation: Bayesian meta-analyses of randomized controlled trials and observational studies. BMC Musculoskelet. Disord. 10, 113 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bisphosphonates marketed as Alendronate (Fosamax, Fosamax Plus D), Etidronate (Didronel), Ibandronate (Boniva), Pamidronate (Aredia), Risedronate (Actonel, Actonel W/Calcium), Tiludronate (Skelid), and Zoledronic acid (Reclast, Zometa). FDA [online], (2007).

  42. Odvina, C. V. et al. Severely suppressed bone turnover: a potential complication of alendronate therapy. J. Clin. Endocrinol. Metab. 90, 1294–1301 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Lenart, B. A., Lorich, D. G. & Lane, J. M. Atypical fractures of the femoral diaphysis in postmenopausal women taking alendronate. N. Engl. J. Med. 358, 1304–1306 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Abrahamsen, B., Eiken, P. & Eastell, R. Subtrochanteric and diaphyseal femur fractures in patients treated with alendronate: a register-based national cohort study. J. Bone Miner. Res. 24, 1095–1102 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Shane, E. et al. Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for Bone and Mineral Research. J. Bone Miner. Res. 25, 2267–2294 (2010).

    Article  PubMed  Google Scholar 

  46. Cardwell, C. R., Abnet, C. C., Cantwell, M. M. & Murray, L. J. Exposure to oral bisphosphonates and risk of esophageal cancer. JAMA 304, 657–663 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Papapetrou, P. D. Bisphosphonate-associated adverse events. Hormones (Athens) 8, 96–110 (2009).

    Article  Google Scholar 

  48. Lyles, K. W. et al. Zoledronic acid and clinical fractures and mortality after hip fracture. N. Engl. J. Med. 357, 1799–1809 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Colon-Emeric, C. S. et al.. Potential mediators of the mortality reduction with zoledronic acid after hip fracture. J. Bone Miner. Res. 25, 91–97 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Center, J. R., Bliuc, D., Nguyen, N. D., Nguyen, T. V. & Eisman, J. A. Osteoporosis medication and reduced mortality risk in elderly women and men. J. Clin. Endocrinol. Metab. 96, 1006–1014 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Sambrook, P. N. et al. Oral bisphosphonates are associated with reduced mortality in frail older people: a prospective five-year study. Osteoporos. Int. 22, 2551–2556 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Bolland, M. J., Grey, A. B., Gamble, G. D. & Reid, I. R. Effect of osteoporosis treatment on mortality: a meta-analysis. J. Clin. Endocrinol. Metab. 95, 1174–1181 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Anderson, G. L. et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women's Health Initiative randomized controlled trial. JAMA 291, 1701–1712 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Torgerson, D. J. & Bell-Syer, S. E. Hormone replacement therapy and prevention of nonvertebral fractures: a meta-analysis of randomized trials. JAMA 285, 2891–2897 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Torgerson, D. J. & Bell-Syer, S. E. Hormone replacement therapy and prevention of vertebral fractures: a meta-analysis of randomized trials. BMC Musculoskelet. Disord. 2, 7 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lindsay, R., Gallagher, J. C., Kleerekoper, M. & Pickar, J. H. Bone response to treatment with lower doses of conjugated estrogens with and without medroxyprogesterone acetate in early postmenopausal women. Osteoporos. Int. 16, 372–379 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Barrett-Connor, E. et al. Effects of raloxifene on cardiovascular events and breast cancer in postmenopausal women. N. Engl. J. Med. 355, 125–137 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Delmas, P. D. et al. Efficacy of raloxifene on vertebral fracture risk reduction in postmenopausal women with osteoporosis: four-year results from a randomized clinical trial. J. Clin. Endocrinol. Metab. 87, 3609–3617 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Adomaityte, J., Farooq, M. & Qayyum, R. Effect of raloxifene therapy on venous thromboembolism in postmenopausal women. A meta-analysis. Thromb. Haemost. 99, 338–342 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Cranney, A. et al. Meta-analyses of therapies for postmenopausal osteoporosis. IV. Meta-analysis of raloxifene for the prevention and treatment of postmenopausal osteoporosis. Endocr. Rev. 23, 524–528 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Cummings, S. R. et al. Lasofoxifene in postmenopausal women with osteoporosis. N. Engl. J. Med. 362, 686–696 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Silverman, S. L. et al. Efficacy of bazedoxifene in reducing new vertebral fracture risk in postmenopausal women with osteoporosis: results from a 3-year, randomized, placebo-, and active-controlled clinical trial. J. Bone Miner. Res. 23, 1923–1934 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Silverman, S. L. New selective estrogen receptor modulators (SERMs) in development. Curr. Osteoporos. Rep. 8, 151–153 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Chesnut, C. H. III . et al. Salmon calcitonin: a review of current and future therapeutic indications. Osteoporos. Int. 19, 479–491 (2008).

    Article  PubMed  Google Scholar 

  65. Silverman, S. L. & Azria, M. The analgesic role of calcitonin following osteoporotic fracture. Osteoporos. Int. 13, 858–867 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Chesnut, C. H. III . et al. A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: the prevent recurrence of osteoporotic fractures study. PROOF Study Group. Am. J. Med. 109, 267–276 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Cranney, A. et al. Meta-analyses of therapies for postmenopausal osteoporosis. VI. Meta-analysis of calcitonin for the treatment of postmenopausal osteoporosis. Endocr. Rev. 23, 540–551 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Miller, P. D. et al. Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded phase 2 clinical trial. Bone 43, 222–229 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Cummings, S. R. et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med. 361, 756–765 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. ProliaTM (denosumab) prescribing information. Amgen Inc. [online], (2010).

  71. Center, J. R., Nguyen, T. V., Schneider, D., Sambrook, P. N. & Eisman, J. A. Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet 353, 878–882 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Johnell, O., Kanis, J. & Gullberg, G. Mortality, morbidity, and assessment of fracture risk in male osteoporosis. Calcif. Tissue Int. 69, 182–184 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Baillie, S. P., Davison, C. E., Johnson, F. J. & Francis, R. M. Pathogenesis of vertebral crush fractures in men. Age Ageing 21, 139–141 (1992).

    Article  CAS  PubMed  Google Scholar 

  74. Ringe, J. D., Dorst, A., Faber, H. & Ibach, K. Alendronate treatment of established primary osteoporosis in men: 3-year results of a prospective, comparative, two-arm study. Rheumatol. Int. 24, 110–113 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Ringe, J. D., Faber, H., Farahmand, P. & Dorst, A. Efficacy of risedronate in men with primary and secondary osteoporosis: results of a 1-year study. Rheumatol. Int. 26, 427–431 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Smith, M. R. et al. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N. Engl. J. Med. 361, 745–755 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sato, Y., Honda, Y. & Iwamoto, J. Risedronate and ergocalciferol prevent hip fracture in elderly men with Parkinson disease. Neurology 68, 911–915 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Boonen, S. et al. Once-weekly risedronate in men with osteoporosis: results of a 2-year, placebo-controlled, double-blind, multicenter study. J. Bone Miner. Res. 24, 719–725 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Saad, F. et al. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J. Natl Cancer Inst. 94, 1458–1468 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Toth, E. et al. The effect of intranasal salmon calcitonin therapy on bone mineral density in idiopathic male osteoporosis without vertebral fractures—an open label study. Bone 36, 47–51 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Snyder, P. J. et al. Effects of testosterone replacement in hypogonadal men. J. Clin. Endocrinol. Metab. 85, 2670–2677 (2000).

    CAS  PubMed  Google Scholar 

  82. Van Staa, T. P., Leufkens, H. G. & Cooper, C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos. Int. 13, 777–787 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Angeli, A. et al. High prevalence of asymptomatic vertebral fractures in post-menopausal women receiving chronic glucocorticoid therapy: a cross-sectional outpatient study. Bone 39, 253–259 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Naganathan, V. et al. Vertebral fracture risk with long-term corticosteroid therapy: prevalence and relation to age, bone density, and corticosteroid use. Arch. Intern. Med. 160, 2917–2922 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Homik, J. E. et al. A meta-analysis on the use of bisphosphonates in corticosteroid induced osteoporosis. J. Rheumatol. 26, 1148–1157 (1999).

    CAS  PubMed  Google Scholar 

  86. Cranney, A. et al. Calcitonin for the treatment and prevention of corticosteroid-induced osteoporosis. Cochrane Database of Systematic Reviews Issue 1. Art. No.: CD001983 doi:10.1002/14651858.CD001983 (2000).

  87. Dawson-Hughes, B. & National Osteoporosis Foundation Guide Committee. A revised clinician's guide to the prevention and treatment of osteoporosis. J. Clin. Endocrinol. Metab. 93, 2463–2465 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Kanis, J. A. et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 19, 399–428 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fracture Risk Calculator. Garvan Institute [online], (2011).

  90. Kanis, J. A., Johnell, O., Oden, A., Johansson, H. & McCloskey, E. FRAX and the assessment of fracture probability in men and women from the U. K. Osteoporos. Int. 19, 385–397 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Utian, W. H. et al.. Estrogen and progestogen use in postmenopausal women: July 2008 position statement of the North American Menopause Society. Menopause 15, 584–602 (2008).

    Article  PubMed  Google Scholar 

  92. Bauer, D. C. et al. Change in bone turnover and hip, non-spine, and vertebral fracture in alendronate-treated women: the fracture intervention trial. J. Bone Miner. Res. 19, 1250–1258 (2004).

    Article  PubMed  Google Scholar 

  93. Seibel, M. J., Naganathan, V., Barton, I. & Grauer, A. Relationship between pretreatment bone resorption and vertebral fracture incidence in postmenopausal osteoporotic women treated with risedronate. J. Bone Miner. Res. 19, 323–329 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Bone, H. G. et al. Ten years' experience with alendronate for osteoporosis in postmenopausal women. N. Engl. J. Med. 350, 1189–1199 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Black, D. M. et al. Effects of continuing or stopping alendronate after 5 years of treatment: the Fracture Intervention Trial Long-term Extension (FLEX): a randomized trial. JAMA 296, 2927–2938 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Schwartz, A. V. et al. Efficacy of continued alendronate for fractures in women with and without prevalent vertebral fracture: the FLEX trial. J. Bone Miner. Res. 25, 976–982 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Cramer, J. A., Gold, D. T., Silverman, S. L. & Lewiecki, E. M. A systematic review of persistence and compliance with bisphosphonates for osteoporosis. Osteoporos. Int. 18, 1023–1031 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Kamatari, M. et al. Factors affecting long-term compliance of osteoporotic patients with bisphosphonate treatment and QOL assessment in actual practice: alendronate and risedronate. J. Bone Miner. Metab. 25, 302–309 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Rossini, M. et al. Determinants of adherence to osteoporosis treatment in clinical practice. Osteoporos. Int. 17, 914–921 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Landfeldt, E., Strom, O., Robbins, S. & Borgstrom, F. Adherence to treatment of primary osteoporosis and its association to fractures-the Swedish Adherence Register Analysis (SARA). Osteoporos. Int. doi:10.1007/s00198-011-1549-6.

  101. Downey, T. W., Foltz, S. H., Boccuzzi, S. J., Omar, M. A. & Kahler, K. H. Adherence and persistence associated with the pharmacologic treatment of osteoporosis in a managed care setting. South Med. J. 99, 570–575 (2006).

    Article  PubMed  Google Scholar 

  102. Saag, K. G. et al. Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. Glucocorticoid-Induced Osteoporosis Intervention Study Group. N. Engl. J. Med. 339, 292–299 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Adachi, J. D. et al. Two-year effects of alendronate on bone mineral density and vertebral fracture in patients receiving glucocorticoids: a randomized, double-blind, placebo-controlled extension trial. Arthritis Rheum. 44, 202–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Cohen, S. et al. Risedronate therapy prevents corticosteroid-induced bone loss: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Arthritis Rheum. 42, 2309–2318 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Wallach, S. et al. Effects of risedronate treatment on bone density and vertebral fracture in patients on corticosteroid therapy. Calcif. Tissue Int. 67, 277–285 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Adachi, J. D. et al. Intermittent etidronate therapy to prevent corticosteroid-induced osteoporosis. N. Engl. J. Med. 337, 382–387 (1997).

    Article  CAS  PubMed  Google Scholar 

  107. Sato, S. et al. Effect of intermittent cyclical etidronate therapy on corticosteroid induced osteoporosis in Japanese patients with connective tissue disease: 3 year follow-up. J. Rheumatol. 30, 2673–2679 (2003).

    CAS  PubMed  Google Scholar 

  108. Campbell, I. A. et al. Five year study of etidronate and/or calcium as prevention and treatment for osteoporosis and fractures in patients with asthma receiving long term oral and/or inhaled glucocorticoids. Thorax 59, 761–768 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Reid, D. M. et al. Zoledronic acid and risedronate in the prevention and treatment of glucocorticoid-induced osteoporosis (HORIZON): a multicentre, double-blind, double-dummy, randomized controlled trial. Lancet 373, 1253–1263 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Dore, R. K. et al. Effects of denosumab on bone mineral density and bone turnover in patients with rheumatoid arthritis receiving concurrent glucocorticoids or bisphosphonates. Ann. Rheum. Dis. 69, 872–875 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J. S. Chen researched the data for the article. Both authors wrote the article and provided substantial contributions to discussions of the content, review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Philip N. Sambrook.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Sambrook, P. Antiresorptive therapies for osteoporosis: a clinical overview. Nat Rev Endocrinol 8, 81–91 (2012). https://doi.org/10.1038/nrendo.2011.146

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.146

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing