Skip to main content
Log in

Topical Nonsteroidal Anti-Inflammatory Drugs for Ophthalmic Use

A Safety Review

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used agents that despite chemically heterogeneity, share similar therapeutic properties and adverse effects. Topical ophthalmic NSAIDs are limited to the relatively water soluble phenylacetic and phenylalkanoic acids as well as indole derivatives, which are more suitable for ophthalmic use. Topical ophthalmic NSAIDs are commonly used in the treatment of post-operative inflammation following cataract extraction and various surgical refractive procedures. They are also used in the prevention and treatment of cystoid macular oedema and for the treatment of allergic conjunctivitis. Absorption of topical ophthalmic NSAIDs through the nasal mucosa results in systemic exposure and the occurrence of adverse systemic events, including exacerbation of bronchial asthma. Local irritant effects of topical ophthalmic NSAIDs include conjunctival hyperaemia, burning, stinging and corneal anaesthesia. A more serious complication involves the association of topical ophthalmic NSAIDs with indolent corneal ulceration and full-thickness corneal melts. Analysis of NSAID-associated corneal events implicates the now defunct generic dicolfenac product, diclofenac sodium ophthalmic solution as the agent primarily responsible. However, these events generated a renewed interest in the safety of ophthalmic NSAIDs and a scrutiny of the pharmacology regarding NSAID action in the eye. An elucidation of possible pharmacodynamic explanations of NSAID-induced corneal injury includes the role of epithelial hypoxia, which not only appears to aid in determining the metabolic destination of arachidonate, it may play a key role in orchestrating a novel inflammatory response unrelated to prostanoid formation. The use of NSAIDs under conditions of corneal hypoxia may therefore not only result in a disappointing therapeutic response, it may result in a paradoxical inflammatory exacerbation. Other potential mechanisms include the relationship between NSAIDs and corneal matrix metalloproteinase and direct toxicity due to cytotoxic excipients such as surfactants, solubilisers and preservatives found in topical NSAID ophthalmic preparations. In general, ophthalmic NSAIDs may be used safely with other ophthalmic pharmaceuticals; however, concurrent use of agents known to adversely effect the corneal epithelium, such as gentamicin, may lead to increased corneal penetration of the NSAID. The concurrent use of NSAIDs with topical corticosteorids in the face of significant pre-existing corneal inflammation has been identified as a risk factor in precipitating corneal erosions and melts and should be undertaken with caution. Until clinical evidence dictates otherwise, data supporting theories of potential pharmacodynamic mechanisms of NSAID injury do not alter the favorable benefit-risk ratio of ophthalmic NSAID use when employed in an appropriate and judicious manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Table IV
Table V
Fig. 1

Similar content being viewed by others

References

  1. Campbell WB, Halushka PV. Lipid Derived Autocoids. Chapter 26. In: Hardman JG, Limbird LE, editors. Goodman and Gilman’s the pharmacological basis of therapeutics. 9th ed. New York: McGraw-Hill, 1990: 601–33

    Google Scholar 

  2. Flach AJ. Cyclo-oxygenase inhibitors in ophthalmology. Surv Ophthalmol 1992; 36: 259–84

    Article  PubMed  CAS  Google Scholar 

  3. Flach AJ. Topical nonsteroidal drugs for ophthalmic use. Int Ophthalmol Clin 1996; 36: 77–83

    Article  PubMed  CAS  Google Scholar 

  4. Perianin A, Roch-Arveiller M, Giroiund IP, et al. In vivo effects of indomethacin and flurbiprofen on the locomotion of neutrophils elicited by immune and non-immune inflammation in the rat. Eur J Pharmacol 1985; 106: 327–33

    Article  Google Scholar 

  5. Leonardi A, Busato F, Fregona I, et al. Anti-inflammatory and antiallergic effects of ketorolac tromethamine in the conjunctival provocation model. Br J Ophthalmol 2000; 84: 1228–32

    Article  PubMed  CAS  Google Scholar 

  6. Lipsky PE, Isakson PC. Outcome of specific COX-2 inhibition in rheumatoid arthritis. J Rheumatol 1997; 24Suppl 49: 9–14

    Google Scholar 

  7. Needleman P, Isakson P. The discovery and function of COX-2. J Rheumatol 1997; 24Suppl. 49: 6–8

    Google Scholar 

  8. Barkin RL, Sable KS. Caution recommended for prescribing and administering COX1/COX2 and COX2 specific NSAIDs. Pharm Ther 2000; 25: 195–202

    Google Scholar 

  9. Crofford LJ. COX-1 and COX-2 tissue expression: implications and predictions. J Rheumatol 1997; 24Suppl. 49: 15–9

    Google Scholar 

  10. Rooks WH, Maloney PJ, Shott LD, et al. The analgesic and anti-inflammatory profile of ketorolac and its tromethamine salt. Drugs Exp Clin Res 1985; 11: 479–92

    PubMed  CAS  Google Scholar 

  11. Anderson JA, Chen CC, Vita JB. Disposition of topical flurbiprofen in normal and aphakic rabbit eyes. Arch Ophthalmol 1982; 100: 642–5

    Article  PubMed  CAS  Google Scholar 

  12. Ling TL, Combs DL. Ocular bioavailability and tissue distribution of ketorolac tromethamine in rabbits. J Pharm Sci 1987; 76: 289–94

    Article  PubMed  CAS  Google Scholar 

  13. Tang-Liu DD, Liu SS, Weinkam RJ. Ocular and systemic bioavailability of ophthalmic flurbiprofen. J Pharmacokinet Biopharm 1984; 12: 611–26

    PubMed  CAS  Google Scholar 

  14. Solomon KD, Turkalj JW, Whiteside SB, et al. Topical 0.5% ketorolac vs 0.03% flurbiprofen for inhibition of miosis during cataract surgery. Arch Ophthalmol 1997; 115: 1119–22

    Article  PubMed  CAS  Google Scholar 

  15. Tinkelman DG, Rupp G, Kaufamn H, et al. Double-masked, paired comparison clinical study of ketorolac tromethamine 0.5% eyedrops in the treatment of seasonal allergic conjunctivitis. Surv Ophthalmol 1993; 38Suppl.: 133–40

    Article  PubMed  Google Scholar 

  16. Flach AJ. Treatment of postoperative inflammation in ophthalmology. J Toxicol: Cutaneous and Ocular Toxicology 1991; 10: 253–77

    Article  CAS  Google Scholar 

  17. Flach AJ, Dolan BJ, Donahue ME, et al. Comparative effects of ketorolac 0.5% or diclofenac 0.1% ophthalmic solutions on inflammation after cataract surgery. Ophthalmology 1998; 105: 1775–9

    Article  PubMed  CAS  Google Scholar 

  18. Heier J, Cheetham JK, Degryse R, et al. Ketorolac tromethamine 0.5% ophthalmic solution in the treatment of moderate to severe ocular inflammation after cataract surgery: Arandomized, vehicle controlled clinical trial. Am J Ophthalmol 1999; 127: 253–9

    Article  PubMed  CAS  Google Scholar 

  19. Rajpal RK, Cooperman BB. Analgesic efficacy and safety of ketorolac after photorefractive keratectomy. Ketorolac Study Group. J Refract Surg 1999; 15: 661–7

    PubMed  CAS  Google Scholar 

  20. Eiferman RA, Hoffman RS, Sher NA. Topical diclofenac reduced pain following photorefractive keratectomy [letter]. Arch Ophthalmol 1993; 111: 1022

    Article  PubMed  CAS  Google Scholar 

  21. Szucs PA, Nashed AH, Allerga JR, et al. Safety and efficacy of diclofenac ophthalmic in the treatment of corneal abrasions. Ann Emerg Med 2000; 35: 131–7

    Article  PubMed  CAS  Google Scholar 

  22. Frucht-Pery J, Siganos CS, Solomon A, et al. Topical indomethacin solution versus dexamethasone solution for the treatment of inflammed pterygium and pinguecula: a prospective randomized clinical study. Am J Ophthalmol 1999; 127: 148–52

    Article  PubMed  CAS  Google Scholar 

  23. Kent AR, Dubiner HB, Whitaker R, et al. The efficacy and safety of diclofenac 0.1% versus prednisolone acetate 1% following trabeculectomy with adjunctive mitomycin C. Ophthalmic Surg Lasers 1998; 29: 562–9

    PubMed  CAS  Google Scholar 

  24. Sharma A, Gupta R, Ram J, et al. Topical ketorolac 0.5% solution for the treatment of vernal keratoconjunctivits. Indian J Ophthalmol 1997; 45: 177–80

    PubMed  CAS  Google Scholar 

  25. Sharir M. Exacerbation of asthma by topical diclofenac. Arch Ophthalmol 1997; 115: 294–5

    Google Scholar 

  26. Polachek J, Shvartzman P. Acute bronchial asthma associated with the administration of ophthalmic indomethacin. Isr J Med Sci 1996; 32: 1107–9

    PubMed  CAS  Google Scholar 

  27. Sheehan GJ, Kutzner MR, Chin WD. Acute asthma attack due to ophthalmic indomethacin. Ann Intern Med 1989; 111: 337–8

    PubMed  CAS  Google Scholar 

  28. Lee TH. Mechanism of bronchospasm in aspirin-sensitive asthma. Am Rev Respir Dis 1993; 148: 1442–3

    Article  PubMed  CAS  Google Scholar 

  29. Chan TYK. Severe asthma attacks precipitated by NSAIDs [letter]. Ann Pharmacother 1995; 29: 199

    PubMed  CAS  Google Scholar 

  30. Martelli, EA. Drug treatment of inflammation: requirements and expectations. In: Bonta IL, Bray MA, Parnham MJ, editors. Handbook of inflammation. Vol. 5. The pharmacology of inflammation. New York: Elsevier, 1985: 5

    Google Scholar 

  31. Estes LL, Fuhs DW, Heaton AH, et al. Gastric ulcer perforation associated with the use of injectable ketorolac. Ann Pharmacother 1993; 27: 42–3

    PubMed  CAS  Google Scholar 

  32. McEvoy GK, editor. Ketorolac tromethamine. American Hospital Formulary Service drug information 2000. Bethesda (MD): American Society of Hospital Pharmacists, 2000: 1842–5

  33. Insel PA. Analgesic-antipyretic and anti-inflammatory agents and drugs employed in the treatment of gout. Hardman JG, Limbird LE, editors. Goodman and Gilman’s the pharmacological basis of therapeutics. 9th ed. McGraw-Hill, 1996: 501–34

    Google Scholar 

  34. Clive DM, Stoff JS. Renal syndromes associated nonsteroidal anti-inflammatory drugs. N Engl J Med 1984; 310: 563–72

    Article  PubMed  CAS  Google Scholar 

  35. DeSantis M, Carducci B, Cavalierse AF, et al. Drug-induced congenital defects: strategies to reduce incidence. Drug Saf 2001; 24(12): 889–901

    CAS  Google Scholar 

  36. Physicians Desk Reference. 54th ed, 2000. Montvale (NJ); Medical Economics Co.: 2207, 2673, 3262

  37. Needs CJ, Brooks PM. Antirheumatic medication during lactation. Br J Rheumatol 1985; 24: 291–7

    Article  PubMed  CAS  Google Scholar 

  38. Masket S. Consultation section. J Cataract Refract Surg 1994; 20: 665–9

    Google Scholar 

  39. Halpern B, Pavilack MA, Gallagher SP. The incidence of atonic pupil following cataract surgery. Arch Ophthalmol 1995; 113: 448–50

    Article  PubMed  CAS  Google Scholar 

  40. Ueda K, Higashi N, Kume A, et al. Allergic contact dermatitis due to diclofenac and indomethacin [short communication]. Contact Dermatits 1998; 39: 323

    Article  CAS  Google Scholar 

  41. Szerenyi K, Sorken K, Garbus JJ et al. Decrease in normal human corneal sensitivity with topical diclofenac sodium. Am J Ophthalmol 1994; 118: 312–5

    PubMed  CAS  Google Scholar 

  42. Gills JP Voltaren associated with medication keratitis. J Cataract Refract Surg 1994; 20: 110

    PubMed  CAS  Google Scholar 

  43. Aragona P, Tripodi G, Spinella R, et al. The effects of the topical administration of non-steroidal anti-inflammatory drugs on corneal epithelium and corneal sensitivity in normal subjects. Eye 2000; 14: 206–10

    Article  PubMed  Google Scholar 

  44. Shimazaki J, Saito H, Yank HY, et al. Persistent epithelial defect following penetrating keratoplasty: an adverse effect of diclofenac eyedrops. Cornea 1995; 14: 623–7

    PubMed  CAS  Google Scholar 

  45. McNab AA. Lacrimal canalicular obstruction associated with topical ocular medication. Aust N Z J Ophthalmol 1998; 26: 219–23

    Article  PubMed  CAS  Google Scholar 

  46. Li JC Rapuano CJ, Laibson PR, et al. Corneal melting associated with use of topical nonsteroidal anti-inflammatory drugs after ocular surgery. Arch Ophthalmol 2000; 118: 1129–32

    Google Scholar 

  47. Alcon Letter to Health Professionals, 1999 Sep 15

  48. Hsu JKW, Reed R, McDonnell PJ, et al. Corneal melts associated with diclofenac after LASIK [poster no. 353]. Symposium on Cataract, IOL and Refractive Surgery. American Society of Cataract and Refractive Surgery (ASCRS); 2000 May 20-22; Boston (MA)

    Google Scholar 

  49. Guidera AC. Nonsteroidal anti-inflammatory drugs: possible role in corneal ulcerations and perforations [poster no. 354]. Symposium on Cataract, IOL and Refractive Surgery. American Society of Cataract and Refractive Surgery (ASCRS ); 2000 May 20-22; Boston (MA)

    Google Scholar 

  50. Mah FS, Dhaliwal D, Barad R. Do NSAIDs cause wound melting following uncomplicated, small incision, scleral tunnel phacoemulsification [poster no. 351]. Symposium on cataract, IOL and refractive surgery. American Society of Cataract and Refractive Surgery (ASCRS ); 2000 May 20-22; Boston (MA)

    Google Scholar 

  51. United States Food and Drug Administration Center for Drug Evaluation and Research. Office of Postmarketing Drug Risk Assessment, December 2000

  52. Tabbara KF. Peripheral corneal infiltrates following oral diclofenac administration [case report]. Arch Ophthalmol 2000; 118: 1451

    PubMed  CAS  Google Scholar 

  53. Teal P, Breslin C, Arshinoff S, et al. Corneal subepithelial infiltrates following excimer laser photorefractive keratectomy. J Cataract Refract Surg 1995; 21: 516–8

    PubMed  CAS  Google Scholar 

  54. Congdon NG, Schein OD, Kulajta PV, et al. Corneal complications associated with topical use of nonsteroidal anti-inflammatory drugs. J Cataract Refract Surg 2001; 27: 622–31

    Article  PubMed  CAS  Google Scholar 

  55. Gaynes BI, Fiscella RG. Biotransformation in review: applications in ocular disease and drug design. J Ocul Pharmacol Ther 1996; 12: 527–39

    Article  PubMed  CAS  Google Scholar 

  56. Mieyal PA, Bonazzi A Jiang H, et al. The effect of hypoxia on endogenous corneal epithelial eicosanoids. Invest Ophthalmol Vis Sci 2000; 41: 2170–6

    PubMed  CAS  Google Scholar 

  57. Abelson MB, Schaeffer K. Conjunctivitis of allergic origin: immunologic mechanisms and current approaches to therapy. Surv Ophthalmol 1993; 38: 115–32

    Article  PubMed  Google Scholar 

  58. Bazan HEP, Birkle DL, Beuerman RW, et al. Inflammation induced stimulation of the synthesis of prostaglandins and lipoxygenase-reactions produced in rabbit cornea. Curr Eye Res 1985; 4: 175–9

    Article  PubMed  CAS  Google Scholar 

  59. Schwartzman ML. Cytochrome P450 and arachidonic acid metabolism in the corneal epithelium: role in inflammation. In: Green K, Edelhauser HF, Hackett RB, et al., editors. Advances in ocular toxicology. New York: Plenum Press, 1997: 3–20

    Chapter  Google Scholar 

  60. Honn DS, Tang DG. Eicosanoid 12 (S)-HETE upregulates endothelial cell alpha V beta 3 integrin expression and promotes tumor cell adhesion to vascular endothelium. Adv Exp Med Biol 1997; 444B: 765–73

    Google Scholar 

  61. Tang DG, Renaud C, Stojakovic S, et al. 12 (S)HETE is a mitogenic factor for microvascular endothelial cells: its potential role in angiogenesis. Biochem Biophys Res Commun 1995; 211: 462–8

    Article  PubMed  CAS  Google Scholar 

  62. Schwartzman ML, Abraham NG. Ocular cytochrome P-450 metabolism of arachidonate: synthesis and bioassay. Methods Enzymol 1990; 187: 372–84

    Article  PubMed  CAS  Google Scholar 

  63. Masferrer JL, Rios AP, Schwartzman ML. Inhibition of renal, cardiac and corneal Na+-K+ ATPase by 12 (R)hydroxyeico-satetraenoic acid. Biochem Pharmacol 1990; 39: 1971–4

    Article  PubMed  CAS  Google Scholar 

  64. Stoltz RA, Conners MS, Gerritsen ME, et al. Direct stimulation of limbal microvessel endothelial cell proliferation and capillary formation in vitro by a corneal derived eicosanoid. Am J Pathology 1996; 148: 129–39

    CAS  Google Scholar 

  65. Yamamoto S, Nishimura M, Conners MS, et al. Oxidation and keto reduction of 12-hydroxy-5,8,10,14-eicosatetraenoic acids in bovine corneal epithelial microsomes. Biochim Biophys Acta 1994; 1210: 217–25

    Article  PubMed  CAS  Google Scholar 

  66. Conners MS, Stoltz RA, Webb SD. A closed eye-contact lens model of corneal inflammation, I: induction of cytochrome P450 arachidonic acid metabolism. Invest Ophthalmol Vis Sci 1995; 36: 828–40

    PubMed  CAS  Google Scholar 

  67. Mastyugin V, Aversa E, Bonazzi A, et al. Hypoxia-induced production of 12-hydroxyeicosanoids in the corneal epithelium: involvement of a cytochrome P-450B1 isoform. J Pharmacol Exp Ther 1999; 289: 1611–9

    PubMed  CAS  Google Scholar 

  68. Davis KL, Conners MS, Dunn MW, et al. Induction of corneal endothelial cytochrome P450 arachidonate metabolism by contact lens wear. Invest Ophthalmol Vis Sci 1992; 33: 291–7

    PubMed  CAS  Google Scholar 

  69. Bonazzi A, Mastyugin V, Mieyal PA, et al. Regulation of cyclo-oxygenase-2 by hypoxia and peroxisome proliferators in the corneal epithelium. J Biol Chem 2000.; 275: 2837–44

    Article  PubMed  CAS  Google Scholar 

  70. Corton C, Anderson SP, Stauber A. Central role of peroxisome proliferator-activated receptors in the actions of peroxisome proliferators. Annu Rev Pharmacol Toxicol 2000; 40: 491–518

    Article  PubMed  CAS  Google Scholar 

  71. Simmons NL, Botting RM, Robertson PM, et al. Induction of an acetaminophen sensitive cyclo-oxygenase with reduced sensitivity to nonsteroid antiinflammatory drugs. Proc Natl Acad Sci U S A 1999; 96: 3275–80

    Article  PubMed  CAS  Google Scholar 

  72. Srinivasan BD, Kulkarni PS. Inhibitors of arachidonic acid cascade in the management of ocular inflammation. In: Bito LZ, Stjernschantz J, editors. The ocular effect of prostaglandins and other eicosanoids. New York: Alan R. Liss; 1989: 229–49

    Google Scholar 

  73. Jampol LM, Jain S, Pudzisz B, et al. Nonsteroidal anti-inflammatory drugs and cataract surgery. Arch Ophthalmol 1994; 112: 891–4

    Article  PubMed  CAS  Google Scholar 

  74. Mieyal PA, Dunn MW, Schwartzman ML. Detection of endogenous 12-hydroxyeicosatrienoic acid in human tear film. Ophthalmol Vision Sci 2001; 42: 328–32

    CAS  Google Scholar 

  75. Bachman WG, Wilson G. Essential ions for maintenance of the corneal epithelial surface. Invest Ophthalmol Vis Sci 1985; 26: 1484–8

    PubMed  CAS  Google Scholar 

  76. Fujishima H, Shimazaki J, Yagi Y, et al. Improvement in corneal sensation and tear dynamics in diabetic patients by oral aldose reductase inhibitor ONO-2235: a preliminary study. Cornea 1996; 15: 368–72

    Article  PubMed  CAS  Google Scholar 

  77. Nepp J, Abela C, Polzer I, et al. Is there a correlation between the severity of diabetic retinopathy and keratoconjunctivitis sicca? Cornea 2000; 19: 487–91

    Article  PubMed  CAS  Google Scholar 

  78. Granna RM, Zieske JD, Assouline M, et al. Matrix metalloproteinases in epithelia from human recurrent erosion. Invest Ophthalmol Vis Sci 1999; 40: 1266–70

    Google Scholar 

  79. Fini ME, Parks WC, Rinehart WB, et al. Role of matrix metalloproteinases in failure to re-epithelialize after corneal injury. Am J Pathol 1996; 149: 1287–302

    PubMed  CAS  Google Scholar 

  80. Ito A, Nose T, Takahashi S, et al. Cyclooxygenase inhibitors augment the production of pro-matrix metalloproteinase 9 (progelantinase B) in rabbit articular chondrocytes. FEBS Lett 1995; 360: 75–9

    Article  PubMed  CAS  Google Scholar 

  81. Hargrave SL, Jung JC, Fini ME, et al. Possible roll of the vitamin E solubilizer in topical diclofenac on matrix metalloproteinase expression in corneal melting. Ophthalmology 2002; 109: 343–50

    Article  PubMed  Google Scholar 

  82. Stroobants A, Fabre K, Maudgal PC. Effect of non-steroidal anti-inflammatory drugs (NSAID) on the rabbit corneal epithelium studied by scanning electron microscopy. Bull Soc Belge Ophthalmol 2000; 276: 73–81

    CAS  Google Scholar 

  83. Edelhauser HF, Jacobs J, Holley BS. Diclofenac: the effect on the cornea with and without the epithelium [poster no. 350]. Symposium on Cataract, IOL and Refractive Surgery. American Society of Cataract and Refractive Surgery (ASCRS ); 2000 May 20-22; Boston (MA)

  84. Hersh P, Rice BA, Baer JC, et al. Topical non-steroidal agents and corneal wound healing. Arch Ophthalmol 1990; 108: 577–83

    Article  PubMed  CAS  Google Scholar 

  85. Kaiser PK, Pineda R. A study of topical nonsteroidal anti-inflammatory drops and no pressure patching in the treatment of corneal abrasions. Corneal abrasion patching study group. Ophthalmology 1997; 104: 1353–9

    PubMed  CAS  Google Scholar 

  86. Shimazaki J, Fujishima H, Yagi Y, et al. Effects of diclofenac eye drops on corneal epithelial structure and function after small incision cataract surgery. Ophthalmology 1996; 103: 50–7

    PubMed  CAS  Google Scholar 

  87. Xiaojun L, Xie W, Reed D, et al. Nonsteroidal anti-inflammatory drugs cause apoptosis and induce cyclo-oygenases in chicken embryo fibroblasts. Proc Natl Acad Sci 1995; 92: 7961–5

    Article  Google Scholar 

  88. Guidera AC, Luchs JI, Udell IJ. Keratitis, ulceration and perforation associated with topical nonsteroidal anti-inflammatory drugs. Ophthalmology 2001; 108: 936–44

    Article  PubMed  CAS  Google Scholar 

  89. Barraquer RI, Alvarez de Toledo JP, Montane D, et al. Fixed-dose combination of 0.1% diclofenac plus 0.3% tobramycin ophthalmic solution for inflammation after cataract surgery. Arandomized, comparative, active treatment-controlled trial. Eur J Ophthalmol 1998; 8: 173–8

    PubMed  CAS  Google Scholar 

  90. Killer HE, Borruat FX, Blumer BK, et al. Corneal penetration of diclofenac from a fixed combination of diclofenac-gentamicin eyedrops. J Cataract Refract Surg 1998; 24: 1365–70

    PubMed  CAS  Google Scholar 

  91. Romanowski EG, Gordon YJ. Effects of diclofenac or ketorolac on the inhibitory activity of cidofovir in the Ad5/NZW rabbit model. Invest Ophthalmol Vis Sci 2001; 42: 158–62

    PubMed  CAS  Google Scholar 

  92. Konowal A, Morrison JC, Brown SVL, et al. Irreversible corneal decompensation in patients treated with topical dorzolamide. Am J Ophthalmol 1999; 127: 403–6

    Article  PubMed  CAS  Google Scholar 

  93. Sponsel WE, Paris G, Trigo Y, et al. Latanoprost and brimonidine: therapeutic and physiologic assessment before and after non-steroidal anti-inflammatory therapy. Am J Ophthalmol 2002; 133: 11–8

    Article  PubMed  CAS  Google Scholar 

  94. Guidera AC, Luchs JI, Udell IJ. Keratitis, ulceration and perforation associated with topical nonsteroidal anti-inflammatory drugs. Ophthalmology 2001; 108: 936–44

    Article  PubMed  CAS  Google Scholar 

  95. Adams J, Wilcox MJ, Trousdale MD, et al. Morphologic and physiologic effects of artificial tear formulations on corneal epithelial derived cells. Cornea 1992; 11: 234–41

    PubMed  CAS  Google Scholar 

  96. Rivas L, Toledano A, Alvarez MI, et al. Ultrastructural study of the conjunctiva in patients with keratoconjunctivitis sicca not associated with systemic disorders. Eur J Ophthalmol 1998; 8: 131–6

    PubMed  CAS  Google Scholar 

  97. Price FW. New pieces for the puzzle: nonsteroidal anti-inflammatory drugs and corneal ulcers. J Cataract Refract Surg 2000; 26: 1263–5

    Article  PubMed  CAS  Google Scholar 

  98. Stern M, Beuerman R, Fox R, et al. The pathology of dry eye: the interaction between ocular surface and the lacrimal glands. Cornea 1998; 17: 584–9

    Article  PubMed  CAS  Google Scholar 

  99. Yamada M, Ogata M, Kawai M, et al. Topical diclofenac sodium decreases the substance P content of tears. Arch Ophthalmol 2002; 120: 51–4

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Louise C. Norton Trust, Chicago, Illinois, and the thoughtful suggestions of Dr Michal L. Schwartzman, in the preparation of this manuscript are gratefully acknowledged. The authors have no propriety interest in any drug product discussed in this report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce I. Gaynes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaynes, B.I., Fiscella, R. Topical Nonsteroidal Anti-Inflammatory Drugs for Ophthalmic Use. Drug-Safety 25, 233–250 (2002). https://doi.org/10.2165/00002018-200225040-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200225040-00002

Keywords

Navigation