Skip to main content
Log in

Pharmacokinetics/Pharmacodynamics of Bisphosphonates

Use for Optimisation of Intermittent Therapy for Osteoporosis

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Bisphosphonates suppress osteoclast-mediated bone resorption and are widely used in the management of osteoporosis. Daily oral administration of alendronic acid and risedronic acid have been shown to reduce the risk of vertebral and non-vertebral fractures. Once-weekly regimens with these bisphosphonates are pharmacologically equivalent to daily regimens. Regimens with treatment-free intervals longer than 1 week present an attractive therapeutic option as they may offer additional patient convenience and long-term adherence to treatment. However, until recently, such regimens, usually referred to as intermittent or cyclical, have not shown any convincing antifracture efficacy in clinical trials, probably because of the empirical manner in which the design of these regimens has been approached. Investigation of pharmacokinetics/pharmacodynamics of bisphosphonates may help in the design of effective intermittent dosage regimens.

Bisphosphonates are poorly absorbed from the gastrointestinal tract and about 50% of the absorbed drug is taken up selectively by the skeleton, while the rest is excreted unaltered in urine. Bisphosphonates exert their action at the bone surface, where they are taken up by the osteoclasts during bone resorption. Therefore, when describing the pharmacokinetics of bisphosphonates in relation to the pharmacodynamics, the amount of bisphosphonate at the skeleton should be accounted for. Few of the reported clinical pharmacokinetic studies addressed this issue. This is partly due to the absence of study design elements to account for skeletal binding of the drugs. Pharmacokinetic studies have also been hampered by technical difficulties in determining the concentration of bisphosphonates in serum and urine. Moreover, most clinical pharmacokinetic (but also pharmacokinetic/pharmacodynamic) studies have primarily used noncompartmental analysis, leaving out the distinct advantages of modelling and simulation techniques.

Clinically, the primary action of bisphosphonates can be assessed by the measurement of biochemical markers of bone resorption. Recent studies indicate that the pattern of these markers during bisphosphonate treatment may be predictive of antifracture efficacy; however, only limited data are available for the development of pharmacokinetic/pharmacodynamic models that are able to predict the response of these markers to different treatment regimens with bisphosphonates. Recently, pharmacokinetic/pharmacodynamic models for response to bisphosphonates have been described and, at present, some of them are being used in the design of bisphosphonate regimens with long drug-free intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Blomen LJMJ. History of the bisphosphonates: discovery and history of the non-medical uses of bisphosphonates. In: Bijvoet OLM, Fleisch H, Canfield RE, et al., editors. Bisphosphonates on bone. Amsterdam: Elsevier, 1995: 111–24

    Google Scholar 

  2. Fleisch H, Russell RGG, Francis MD. Diphosphonates inhibit hydroxyapatite dissolution in vitro and bone resorption in tissue culture and in vivo. Science 1969; 165: 1262–4

    PubMed  CAS  Google Scholar 

  3. Fleisch H. Bisphosphonates: mechanisms of action. Endocr Rev 1998; 19(1): 80–100

    PubMed  CAS  Google Scholar 

  4. Consensus Development Conference. Diagnosis, prophylaxis and treatment of osteoporosis. Am J Med 1993; 94: 646–50

    Google Scholar 

  5. Melton III LJ, Cooper C. Magnitude and impact of osteoporosis and fractures. In: Marcus R, Feldman D, Kelsey J, editors. Osteoporosis. 2nd ed. New York: Academic Press, 2001: 557–77

    Google Scholar 

  6. Harris AL, Watts DJ, Genant HK, et al. Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy With Risedronate Therapy (VERT) Study Group. JAMA 1999; 282(14): 1344–52

    PubMed  CAS  Google Scholar 

  7. Black DM, Cummings SR, Karpf DB, et al. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet 1996; 348: 1535–41

    PubMed  CAS  Google Scholar 

  8. Cummings SR, Black DM, Thompson DE, et al. Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the fracture intervention trial. JAMA 1998; 280(24): 2077–82

    PubMed  CAS  Google Scholar 

  9. McClung M, Geusens P, Miller PD, et al. Effect of risedronate on the risk of hip fracture in elderly women. N Engl J Med 2001; 344(5): 333–40

    PubMed  CAS  Google Scholar 

  10. Reginster J, Minne HW, Sorensen OH, et al. Randomized trial of the effects of risedronate on vertebral fractures in women with established postmenopausal osteoporosis. Vertebral Efficacy with Risedronate Therapy (VERT) Study Group. Osteoporos Int 2000; 11(1): 83–91

    PubMed  CAS  Google Scholar 

  11. Cranney A, Wells G, Willan A, et al. Meta-analyses of therapies for postmenopausal osteoporosis. II: meta-analysis of alendronate for the treatment of postmenopausal women. Endocr Rev 2002; 23(4): 508–16

    PubMed  CAS  Google Scholar 

  12. Cranney A, Tugwell P, Adachi J, et al. III. Meta-analysis of risedronate for the treatment of postmenopausal osteoporosis. Endocr Rev 2003; 23(4): 517–23

    Google Scholar 

  13. Bone HG, Adami S, Rizzoli R, et al. Weekly administration of alendronate: rationale and plan for clinical assessment. Clin Ther 2000; 22(1): 15–28

    PubMed  CAS  Google Scholar 

  14. Greenspan SL, Bone III G, Schnitzer TJ, et al. Two-year results of once-weekly administration of alendronate 70mg for the treatment of postmenopausal osteoporosis. J Bone Miner Res 2002; 17(11): 1988–96

    PubMed  CAS  Google Scholar 

  15. Schnitzer T, Bone HG, Crepaldi G. Therapeutic equivalence of alendronate 70mg once-weekly and alendronate 10mg daily in the treatment of osteoporosis. Alendronate Once-Weekly Study Group. Aging (Milano) 2000; 12: 1–12

    CAS  Google Scholar 

  16. Brown JP, Kenler DL, Mcclung MR, et al. The efficacy and tolerability of risedronate once a week for the treatment of postmenopausal osteoporosis. Calcif Tissue Int 2002; 71: 103–11

    PubMed  CAS  Google Scholar 

  17. Chestnut III CH, Skag A, Christiansen C. Oral ibandronate osteoporosis vertebral fracture trial in North America and Europe (BONE): effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J Bone Miner Res 2004; 19(8): 1241–9

    Google Scholar 

  18. Sparidans RW, Den Hartigh J. Chromatographic analysis of bisphosphonates. Pharm World Sci 1999; 21(1): 1–10

    PubMed  CAS  Google Scholar 

  19. Cremers S, Sparidans R, Den HJ, et al. A pharmacokinetic and pharmacodynamic model for intravenous bisphosphonate (pamidronate) in osteoporosis. Eur J Clin Pharmacol 2002; 57: 883–90

    PubMed  CAS  Google Scholar 

  20. Legay F, Gauron S, Deckert F, et al. Development and validation of a highly sensitive RIA for zoledronic acid, a new potent heterocyclic bisphosphonate, in human serum, plasma and urine. J Pharm Biomed Anal 2002; 30: 897–911

    PubMed  CAS  Google Scholar 

  21. Phipps R, Lindsay R, Burgio D, et al. Head-to-head comparison of risedronate and alendronate pharmacokinetics at clinical doses. Bone 2004; 34: S81–S82

    Google Scholar 

  22. Makler PT, Charkes ND. Studies of skeletal tracer kinetics IV. optimum time delay for Tc-99m (Sn) methylene diphosphonate bone imaging. J Nucl Med 1980; 21: 641–5

    PubMed  Google Scholar 

  23. Pillai G, Gieschke R, Goggin T, et al. A semimechanistic and mechanistic population PK-PD model for biomarker response to ibandronate, a new bisphosphonate for the treatment of osteoporosis. Br J Clin Pharmacol 2004; 58(6): 618–31

    PubMed  Google Scholar 

  24. Mele M, Conte E, Fratello A, et al. Computer-analysis of Tc-99m DPD and Tc-99m MDP kinetics in human: concise communication. J Nucl Med 1983; 24: 334–8

    PubMed  CAS  Google Scholar 

  25. Porras AG, Holland SD, Gertz BJ. Pharmacokinetics of alendronate. Clin Pharmacokinet 1999; 36(5): 315–28

    PubMed  CAS  Google Scholar 

  26. O’Flaherty EJ. Physiologically based models for bone-seeking elements. IV: Kinetics of lead disposition in humans. Toxicol Appl Pharmacol 1993; 118: 16–29

    PubMed  Google Scholar 

  27. Mitchell DY, Barr WH, Eusebio RA, et al. Risedronate pharmacokinetics and intra- and inter-subject variability upon single-dose intravenous and oral administration. Pharm Res 2001; 18(2): 166–70

    PubMed  CAS  Google Scholar 

  28. Hernandez CJ, Beaupre GS, Marcus R, et al. Long-term predictions of the therapeutic equivalence of daily and less than daily alendronate dosing. J Bone Miner Res 2002; 17(9): 1662–6

    PubMed  CAS  Google Scholar 

  29. Berenson JR, Ravera C, Ma P, et al. Population pharmacokinetics of zoledronate [abstract]. Proc Am Soc Clin Oncol 2002; 23: 209A

    Google Scholar 

  30. Chen T, Berenson JR, Vescio R, et al. Pharmacokinetics and pharmacodynamics of zoledronic acid in cancer patients with bone metastases. J Clin Pharmacol 2002; 42(11): 1228–36

    PubMed  CAS  Google Scholar 

  31. Fogelman I, Bessent RG, Turner JG, et al. The use of whole-body retention of Tc-99m diphosphonate in the diagnosis of metabolic bone disease. J Nucl Med 1978; 19(3): 270–5

    PubMed  CAS  Google Scholar 

  32. Hyldstrup L, Mogensen N, Finn-Jensen G, et al. Urinary 99mTc-diphosphonate excretion as a simple method to quantify bone metabolism. Scand J Clin Lab Invest 1984; 44: 105–9

    PubMed  CAS  Google Scholar 

  33. Masarachia P, Weinreb M, Balena R, et al. Comparison of the distribution of 3H-alendronate and 3H-etidronate in rate and mouse bones. Bone 1996; 19(3): 281–90

    PubMed  CAS  Google Scholar 

  34. Azuma Y, Sato H, Oue Y, et al. Alendronate distributed on bone surfaces inhibits osteoclastic bone resorption in vitro and in experimental hypercalcemia models. Bone 1995; 16(2): 235–45

    PubMed  CAS  Google Scholar 

  35. Sato M, Grasser W, Endo N, et al. Bisphosphonate action, alendronate localization in rat bone and effects on osteoclast ultrastructure. J Clin Invest 1991; 88: 2095–105

    PubMed  CAS  Google Scholar 

  36. Lin JH. Bisphosphonates: a review of their pharmacokinetic properties. Bone 1996; 18(2): 75–85

    PubMed  CAS  Google Scholar 

  37. Powell JH, DeMark BR. Clinical pharmacokinetics of diphosphonates. In: Garattini S, editor. Bone resorption, metastasis and diphosphonates. New York: Raven Press, 1985; 41–9

    Google Scholar 

  38. Fogelman I, Smith L, Mazess R, et al. Absorption of oral diphosphonate in normal subjects. Clin Endocrinol (Oxf) 1986; 24(1): 57–62

    CAS  Google Scholar 

  39. Kasting GB, Francis MD. Retention of etidronate in human, dog, and rat. J Bone Miner Res 1992; 7(5): 513–22

    PubMed  CAS  Google Scholar 

  40. Twiss IM, Burggraaf J, Schoemaker RC, et al. The sugar absorption test in the evaluation of the gastrointestinal intolerance to bisphosphonates: studies with oral pamidronate. Clin Pharmacol Ther 2001 Jun; 69(6): 431–7

    PubMed  CAS  Google Scholar 

  41. Hyldstrup L, Flesch G, Hauffe SA. Pharmacokinetic evaluation of pamidronate after oral administration: a study on dose proportionality, absolute bioavailability, and effect of repeated administration. Calcif Tissue Int 1993; 53(5): 297–300

    PubMed  CAS  Google Scholar 

  42. Berenson JR, Rosen L, Vescio R, et al. Pharmacokinetics of pamidronate disodium in patients with cancer with normal or impaired renal function. J Clin Pharmacol 1997; 37(4): 285–90

    PubMed  CAS  Google Scholar 

  43. Leyvraz S, Hess U, Flesch G, et al. Pharmacokinetics of pamidronate in patients with bone metastases. J Natl Cancer Inst 1992; 84(10): 788–92

    PubMed  CAS  Google Scholar 

  44. Redalieu E, Coleman JM, Chan K, et al. Urinary excretion of aminohydroxypropylidene bisphosphonate in cancer patients after single intravenous infusions. J Pharm Sci 1993; 82(6): 665–7

    PubMed  CAS  Google Scholar 

  45. Dodwell DJ, Howell A, Morton AR, et al. Infusion rate and pharmacokinetics of intravenous pamidronate in the treatment of tumour-induced hypercalcaemia. Postgrad Med J 1992; 68(800): 434–9

    PubMed  CAS  Google Scholar 

  46. Daley-Yates PT, Dodwell DJ, Pongchaidecha M, et al. The clearance and bioavailability of pamidronate in patients with breast cancer and bone metastases. Calcif Tissue Int 1991; 49(6): 433–5

    PubMed  CAS  Google Scholar 

  47. Yakatan GJ, Poynor WJ, Talbert RL, et al. Clodronate kinetics and bioavailability. Clin Pharmacol Ther 1982; 31(3): 402–10

    PubMed  CAS  Google Scholar 

  48. Castren-Kortekangas P, Loyttyniemi E, Liukko-Sipi S, et al. Pooling of clodronate urinary excretion data: a new pharmacokinetic method to study drugs with highly variable gastrointestinal absorption. J Bone Miner Res 1997; 12(1): 66–71

    PubMed  CAS  Google Scholar 

  49. Saha H, Castren-Kortekangas P, Ojanen S, et al. Pharmacokinetics of clodronate in renal failure. J Bone Miner Re. 1994; 9(12): 1953–8

    CAS  Google Scholar 

  50. Saha HH, Ala-Houhala IO, Liukko-Sipi SH, et al. Pharmacokinetics of clodronate in peritoneal dialysis patients. Perit Dial Int 1998; 18(2): 204–9

    PubMed  CAS  Google Scholar 

  51. Hanhijarvi H, Elomaa I, Karlsson M, et al. Pharmacokinetics of disodium clodronate after daily intravenous infusions during five consecutive days. Int J Clin Pharmacol Ther Toxicol 1989; 27(12): 602–6

    PubMed  CAS  Google Scholar 

  52. Pentikainen PJ, Elomaa I, Nurmi AK, et al. Pharmacokinetics of clodronate in patients with metastatic breast cancer. Int J Clin Pharmacol Ther Toxicol 1989; 27(5): 222–8

    PubMed  CAS  Google Scholar 

  53. Ylitalo P, Holli K, Monkkonen J, et al. Comparison of pharmacokinetics of clodronate after single and repeated doses. Int J Clin Pharmacol Ther 1999; 37(6): 294–300

    PubMed  CAS  Google Scholar 

  54. Cocquyt V, Kline WF, Gertz BJ, et al. Pharmacokinetics of intravenous alendronate. J Clin Pharmacol 1999; 39(4): 385–93

    PubMed  CAS  Google Scholar 

  55. Khan SA, Kanis JA, Vasikaran S, et al. Elimination and biochemical responses to intravenous alendronate in postmenopausal osteoporosis. J Bone Miner Res 1997; 12(10): 1700–7

    PubMed  CAS  Google Scholar 

  56. Gertz BJ, Holland SD, Kline WF, et al. Studies on the oral bioavailability of alendronate. Clin Pharmacol Ther 1995; 58(3): 288–98

    PubMed  CAS  Google Scholar 

  57. Porras AG, Kline W, Dilzer S, et al. Oral bioavailability of alendronate 35- and 70-mg tablets [abstract]. Clin Pharmacol Ther 2001; 69(2): P84

    Google Scholar 

  58. Mitchell DY, Eusebio RA, Sacco-Gibson NA, et al. Doseproportional pharmacokinetics of risedronate on single-dose oral administration to healthy volunteers. J Clin Pharmacol 2000; 40: 258–65

    PubMed  CAS  Google Scholar 

  59. Mitchell DY, Eusebio RA, Dunlap LE, et al. Risedronate gastrointestinal absorption is independent of site and rate of administration. Pharm Res. 1998; 15(2): 228–32

    PubMed  CAS  Google Scholar 

  60. Mitchell DY, St Peter JV, Eusebio RA, et al. Effect of renal function on risedronate pharmacokinetics after a single oral dose. Br J Clin Pharmacol 2000; 49(3): 215–22

    PubMed  CAS  Google Scholar 

  61. Mitchell DY, Thompson GA, Eusebio RA, et al. Risedronate pharmacokinetics upon multiple dose administration to post-menopausal women for six months [abstract]. Clin Pharmacol Ther 1999; 65(2): P189

    Google Scholar 

  62. Dooley M, Balfour JA. Ibandronate. Drugs 1999; 57(1): 101–8

    PubMed  CAS  Google Scholar 

  63. Bergner R, Dill K, Boerner D, et al. Elimination of intravenously administered ibandronate in patients on haemodialysis: a monocentre open study. Nephrol Dial Transplant 2002; 17(7): 1281–5

    PubMed  CAS  Google Scholar 

  64. Neugebauer G, Hagena CH, Sakalova A, et al. Pharmacokinetics of ibandronate, a highly potent antiresorptive drug on bone metabolism in patients with multiple myeloma [abstract]. Eur J Clin Pharmacol 1998; 54(6): A18

    Google Scholar 

  65. Ravn P, Neugebauer G, Christiansen C. Association between pharmacokinetics of oral ibandronate and clinical response in bone mass and bone turnover in women with postmenopausal osteoporosis. Bone 2002; 30(1): 320–4

    PubMed  CAS  Google Scholar 

  66. Skerjanec A, Berenson J, Hsu C, et al. The pharmacokinetics and pharmacodynamics of zoledronic acid in cancer patients with varying degrees of renal function. J Clin Pharmacol 2003; 43: 154–62

    PubMed  CAS  Google Scholar 

  67. Sansom LN, Necciari J, Thiercelin JF. Human pharmacokinetics of tiludronate. Bone. 1995; 17 (5Suppl.): 479–83S

    Google Scholar 

  68. Schwietert HR, Peeters PA, Dingemanse J, et al. Multiple dose pharmacokinetics of tiludronate in healthy volunteers. Eur J Clin Pharmacol 1996; 51(2): 175–81

    PubMed  CAS  Google Scholar 

  69. Degrossi OJ, Ortiz M, Degrossi EB, et al. Serum kinetics, bioavailability and bone scanning of 99mTc-labelled sodium olpadronate in patients with different rates of bone turnover. Eur J Clin Pharmacol 1995; 48(6): 489–94

    PubMed  CAS  Google Scholar 

  70. Cremers SC, Eekhoff ME, Den Hartigh J, et al. Relationships between pharmacokinetics and rate of bone turnover after intravenous bisphosphonate (olpadronate) in patients with Paget’s disease of bone. J Bone Miner Res 2003; 18(5): 868–75

    PubMed  CAS  Google Scholar 

  71. Mitchell DY, Heise MA, Pallone KA, et al. The effect of dosing regimen on the pharmacokinetics of risedronate. Br J Clin Pharmacol 1999; 48(4): 536–42

    PubMed  CAS  Google Scholar 

  72. Van Beek E, Hoekstra M, van de Ruit M, et al. Structural requirements for bisphosphonate action in vitro. J Bone Miner Res 1994; 9(12): 1875–82

    PubMed  CAS  Google Scholar 

  73. Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 2000; 21(2): 115–37

    PubMed  CAS  Google Scholar 

  74. Parfitt AM, Mundy GR, Roodman GD, et al. A new model for the regulation of bone resorption, with particular reference to the effects of bisphosphonates. J Bone Miner Res 1996; 11(2): 150–9

    PubMed  CAS  Google Scholar 

  75. Papapoulos SE. Bisphosphonates: pharmacology and use in the treatment of osteoporosis. In: Marcus R, Feldman D, Kelsey J, editors. Osteoporosis. 1st ed. London: Academic Press, 1996: 1209–34

    Google Scholar 

  76. Rogers MJ, Frith JC, Luckman SP, et al. Molecular mechanisms of action of bisphosphonates. Bone 1999; 24(5): 73–95

    Google Scholar 

  77. Rodan GA. Mechanisms of action of bisphosphonates. Annu Rev Pharmacol Toxicol 1998; 38: 375–88

    PubMed  CAS  Google Scholar 

  78. Qvist P, Christgau S, Pedersen BJ, et al. Circadian variation in the serum concentration of C-terminal telopeptide of type 1 collagen (serum CTx): effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting. Bone 2002; 31(1): 57–61

    PubMed  CAS  Google Scholar 

  79. Green JR, Mueller K, Jaeggi KA. Preclinical pharmacology of CGP 42′446, a new, potent, heterocyclic bisphosphonate compound. J Bone Miner Res 1994; 9: 745–51

    PubMed  CAS  Google Scholar 

  80. Major P, Lortholarly A, Hon J, et al. Zoledronic acid is superior to pamidronate in the treatment of hypercalcemia of malignancy: a pooled analysis of two randomized, controlled clinical trials. J Clin Oncol 2001; 19(2): 558–67

    PubMed  CAS  Google Scholar 

  81. Dunford JE, Thompson K, Coxon FP, et al. Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J Pharmacol Exp Ther 2001 Feb; 296(2): 235–42

    PubMed  CAS  Google Scholar 

  82. Rosen CJ, Hochberg MC, Bonnick SL, et al. Treatment with once-weekly alendronate 70mg compared with once-weekly risedronate 35mg in women with postmenopausal osteoporosis: a randomized double-blind study. J Bone Miner Res 2005; 20(1): 141–51

    PubMed  CAS  Google Scholar 

  83. Papapoulos SE. Pharmacodynamics of bisphosphonates: implications for treatment. In: Bijvoet OLM, Fleisch HA, Canfield RE, et al., editors. Bisphosphonate on bones. Amsterdam: Elsevier Science BV, 1995: 231–45

    Google Scholar 

  84. McCloskey EV, Selby P, Davies M, et al. Oral clodronate significantly reduces fracture risk in women with post-menopausal or secondary osteoporosis [abstract]. J Bone Miner Res 2000; 15 Suppl. 1: S227

    Google Scholar 

  85. Brumsen C, Papapoulos SE, Lips P, et al. Daily oral pamidronate in women and men with osteoporosis: a 3-year randomized placebo-controlled clinical trial with a 2-year open extension. J Bone Miner Res 2002; 17(6): 1057–64

    PubMed  CAS  Google Scholar 

  86. Thiebaud D, Burckhardt P, Kriegbaum H, et al. Three monthly intravenous injections of ibandronate in the treatment of postmenopausal osteoporosis. Am J Med 1997; 103(4): 298–307

    PubMed  CAS  Google Scholar 

  87. Riis BJ, Ise J, von Stein T, et al. Ibandronate: a comparison of oral daily dosing versus intermittent dosing in postmenopausal osteoporosis. J Bone Miner Res 2001; 16(10): 1871–8

    PubMed  CAS  Google Scholar 

  88. Cooper C, Emkey RD, McDonald RH, et al. Efficacy and safety of oral weekly ibandronate in the treatment of postmenopausal osteoporosis. J Clin Endocrinol Metab 2003; 88(10): 4609–15

    PubMed  CAS  Google Scholar 

  89. Recker R, Stakkestad JA, Chesnut CH 3rd, et al. Insufficiently dosed intravenous ibandronate injections are associated with suboptimal antifracture efficacy in postmenopausal osteoporosis. Bone 2004; 34(5): 890–9

    PubMed  CAS  Google Scholar 

  90. Adami S, Felsenberg D, Christiansen C, et al. Efficacy and safety of ibandronate given by intravenous injection every 3 months. Bone 2004; 34(5): 881–90

    PubMed  CAS  Google Scholar 

  91. Reid IR, Brown J, Burckhardt P, et al. Intravenous zoledronic acid in postmenopausal women with low bone mineral density. N Engl J Med 2002; 346(9): 653–61

    PubMed  CAS  Google Scholar 

  92. Eastell R, Barton I, Hannon RA, et al. Relationship of early changes in bone resorption to the reduction in fracture risk with risedronate. J Bone Miner Res 2003; 18(3): 1051–6

    PubMed  CAS  Google Scholar 

  93. Papapoulos SE. Pharmacological management of Paget’s disease of bone. Clin Rev in Bone Miner Metab 2002; 1: 149–57

    CAS  Google Scholar 

  94. Breimer DD, Danhof M. Relevance of the application of pharmacokinetic/pharmacodynamic modelling concepts in drug development: the ‘wooden shoe’ paradigm. Clin Pharmacokinet 1997; 32: 259–67

    PubMed  CAS  Google Scholar 

  95. Sheiner LB, Steimer JL. Pharmacokinetic/pharmacodynamic modelling in drug development. Annu Rev Pharmacol Toxicol 2000; 40: 67–95

    PubMed  CAS  Google Scholar 

  96. Gieschke R, Steimer JL. Pharmacometrics: modelling and simulation tools to improve decision making in drug development. Eur J Drug Metab Pharmacokinet 2000; 25(1): 49–58

    PubMed  CAS  Google Scholar 

  97. Holford N, Monteleone J, Kimko H, et al. Simulation of clinical trials. Annu Rev Pharmacol Toxicol 2003; 40: 209–34

    Google Scholar 

  98. Kaufmann WJ, Smarr LL. Supercomputing and the transformation of science. New York: Scientific American Library, 1993

    Google Scholar 

  99. Johnson S. The role of simulation in the management of research: what can the pharmaceutical industry learn from the aerospace industry? Drug Inf J 1998; 32: 961–9

    Google Scholar 

  100. Morales Piga A, Abraira Santos V, Rey Rey JS, et al. Factors that determine intensity of response to treatment with tiludronate in Paget’s disease [in Spanish]. Med Clin (Barc) 1998; 110(7): 254–8

    CAS  Google Scholar 

  101. Mager DE, Jusko WJ. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 2001; 28(6): 507–32

    PubMed  CAS  Google Scholar 

  102. Chan PLS, Holford NHG. Drug treatment effects on disease progression. Annu Rev Pharmacol Toxicol 2001; 41: 625–59

    PubMed  CAS  Google Scholar 

  103. Hernandez CJ, Beaupre GS, Marcus R, et al. A theoretical analysis of the contributions of remodeling space, mineralization, and bone balance to changes in bone mineral density during alendronate treatment. Bone 2001; 29(6): 511–6

    PubMed  CAS  Google Scholar 

  104. Chavassieux PM, Arlot ME, Wei L, et al. Histomorphometric assessment of the long-term effects of alendronate on bone quality and remodeling in patients with osteoporosis. J Clin Invest 1997; 100(6): 1475–80

    PubMed  CAS  Google Scholar 

  105. Bauss F, Wagner M, Hothorn L. Total administered dose of ibandronate determines its effects on bone mass and architecture in ovariectomized aged rats. J Rheumatol 2002; 29(5): 990–8

    PubMed  CAS  Google Scholar 

  106. Dayneka NL, Garg V, Jusko WJ. Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 1993; 21: 457–79

    PubMed  CAS  Google Scholar 

  107. Smolen V. Quantitative determination of drug bioavailability and biokinetic behavior from pharmacological data for ophthalmic and oral administration of a mydriatic drug. J Pharm Sci 1971; 60: 354–63

    PubMed  CAS  Google Scholar 

  108. Gabrielsson J, Jusko WJ, Alari L. Modeling of dose-response-time data: four examples of estimating the turnover parameters and generating kinetic functions from response profiles. Biopharm Drug Dispos 2000; 21: 41–52

    PubMed  CAS  Google Scholar 

  109. Jacqmin P, Gieschke R, Jordan P, et al. Modeling drug induced changes in biomarkers without using drug concentrations. Basel: PAGE meeting, 2001 [online]. Available from URL: http://www.page-meeting.org/default.asp?id=21&keuze=abstract-view&goto=abstracts&orderby=author&abstract_id=232 [Accessed 2005 Jan 13]

Download references

Acknowledgements

Dr Cremers was employed by the Leiden University Medical Center, Leiden, The Netherlands at the time of writing this manuscript. He is now an employee of Novartis (Clinical Pharmacology, Oncology), East-Hanover, NJ, USA.

Dr Pillai is an employee of Novartis Pharma AG, Basel, Switzerland.

Dr Papapoulos has received research support and/or honoraria from all major pharmaceutical companies involved in bisphosphonate development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge C. L. M. Cremers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cremers, S.C.L.M., Pillai, G.(. & Papapoulos, S.E. Pharmacokinetics/Pharmacodynamics of Bisphosphonates. Clin Pharmacokinet 44, 551–570 (2005). https://doi.org/10.2165/00003088-200544060-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200544060-00001

Keywords

Navigation