Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Published Ahead of Print
    • Archive
    • Supplemental Issues
    • Collections - French
    • Collections - English
  • Info for
    • Authors & Reviewers
    • Submit a Manuscript
    • Advertisers
    • Careers & Locums
    • Subscribers
    • Permissions
  • About CFP
    • About CFP
    • About the CFPC
    • Editorial Advisory Board
    • Terms of Use
    • Contact Us
  • Feedback
    • Feedback
    • Rapid Responses
    • Most Read
    • Most Cited
    • Email Alerts
  • Blogs
    • Latest Blogs
    • Blog Guidelines
    • Directives pour les blogues
  • Mainpro+ Credits
    • About Mainpro+
    • Member Login
    • Instructions
  • Other Publications
    • http://www.cfpc.ca/Canadianfamilyphysician/
    • https://www.cfpc.ca/Login/
    • Careers and Locums

User menu

  • My alerts

Search

  • Advanced search
The College of Family Physicians of Canada
  • Other Publications
    • http://www.cfpc.ca/Canadianfamilyphysician/
    • https://www.cfpc.ca/Login/
    • Careers and Locums
  • My alerts
The College of Family Physicians of Canada

Advanced Search

  • Home
  • Articles
    • Current
    • Published Ahead of Print
    • Archive
    • Supplemental Issues
    • Collections - French
    • Collections - English
  • Info for
    • Authors & Reviewers
    • Submit a Manuscript
    • Advertisers
    • Careers & Locums
    • Subscribers
    • Permissions
  • About CFP
    • About CFP
    • About the CFPC
    • Editorial Advisory Board
    • Terms of Use
    • Contact Us
  • Feedback
    • Feedback
    • Rapid Responses
    • Most Read
    • Most Cited
    • Email Alerts
  • Blogs
    • Latest Blogs
    • Blog Guidelines
    • Directives pour les blogues
  • Mainpro+ Credits
    • About Mainpro+
    • Member Login
    • Instructions
  • RSS feeds
  • Follow cfp Template on Twitter
  • LinkedIn
  • Instagram
Review ArticlePractice

Recreational water–related illness

Office management and prevention

Margaret Sanborn and Tim Takaro
Canadian Family Physician May 2013; 59 (5) 491-495;
Margaret Sanborn
Rural family and emergency physician in Chesley, Ont, and Assistant Clinical Professor in the Department of Family Medicine at McMaster University.
MD CCFP FCFP
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: msanborn@bmts.com
Tim Takaro
MD MPH MS
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • PDF
Loading

Abstract

Objective To review the risk factors, management, and prevention of recreational water–related illness in family practice.

Sources of information Original and review articles from January 1998 to February 2012 were identified using PubMed and the search terms water-related illness, recreational water illness, and swimmer illness.

Main message There is a 3% to 8% risk of acute gastrointestinal illness (AGI) after swimming. The high-risk groups for AGI are children younger than 5 years, especially if they have not been vaccinated for rotavirus, and elderly and immunocompromised patients. Children are at higher risk because they swallow more water when swimming, stay in the water longer, and play in the shallow water and sand, which are more contaminated. Participants in sports with a lot of water contact like triathlon and kite surfing are also at high risk, and even activities involving partial water contact like boating and fishing carry a 40% to 50% increase in risk of AGI compared with nonwater recreational activities. Stool cultures should be done when a recreational water illness is suspected, and the clinical dehydration scale is a useful clinical tool for assessing the treatment needs of affected children.

Conclusion Recreational water illness is the main attributable cause of AGI during swimming season. Recognition that swimming is a substantial source of illness can help prevent recurrent and secondary cases. Rotavirus vaccine is highly recommended for children who will swim frequently.

Case introduction

Emma, a usually healthy 3-year-old, is brought to your office by her father in August. For 3 days she has had severe diarrhea with up to 6 stools per day. There is no blood in the stool. She is not drinking well or eating any solid food. Her father is concerned about her becoming dehydrated and hopes to have her feeling better before the family heads back to the cottage for the weekend.

Sources of information

A PubMed search from January 1998 to February 2012 was completed using the search terms recreational water illness, water-related illness, and swimmer illness. Two systematic reviews of recreational water illness examined epidemiologic studies1,2; other sources of information included investigations of water-borne disease outbreaks3–5 and 1 experimental study of swimmer illness.6

Main message

Epidemiology

Acute gastrointestinal illness (AGI) is common, occurring in 8% to 9% of Canadians in any 4-week period.7,8 In one urban children’s emergency department (ED) it accounted for 9% of all visits.9

The greatest risk of bacterial, protozoal, and viral gastroenteritis during the swimming season is likely not from exposure through food consumption, drinking water, or at day care, but rather from exposure to recreational water.10,11

Illness from recreational water exposure is common. In field studies of swimmer illness, diarrhea rates of 3% to 8% are found in follow-up health surveys.2,6 The same organisms associated with illness from drinking water (ie, Campylobacter, Salmonella, and Giardia species, and enteric viruses) are found in swimming water but in much higher concentrations. The average water ingestion with swimming is estimated to be 10 to 150 mL per hour.12

Children younger than 10 years of age contract more illness from recreational water because they play in the shallow water and sand, which are most contaminated, have hand-to-mouth exposure, stay in the water longer, immerse their heads more often, and swallow more water while swimming.2,13,14

At public beaches, swimmer health is supposed to be protected by beach water sampling and beach closure when levels of indicator bacteria (ie, Escherichia coli and coliforms) exceed regulatory levels. However, high sampling and testing costs and long laboratory turnaround times (48 to 72 hours) make it difficult for many municipalities and health units to monitor beaches comprehensively or make real-time closure decisions. Current monitoring methods are not adequately protective against illness from swimming,15 and most swimming in Canada occurs in unmonitored water. Beach signage indicating that water will be unsafe after heavy rainfall, when waves are high, and when turbid is also used to prevent the public from swimming in unsafe water.

Important sources of human illness from beach water contamination include treated human waste water and agricultural run-off, especially from cattle manure.16 Crowded beaches have higher rates of swimmer illness, suggesting swimmer-to-swimmer illness transmission also plays a role.12,17 Modeling estimates suggest that norovirus and rotavirus account for 75% of human illness from swimming.12 As the enteroviruses are mainly species specific, this suggests that human contamination sources account for a high proportion of swimmer illness.

Although AGI is the most common recreational water–related illness, respiratory pathogens such as adenovirus are also found in swimming water and might cause summer respiratory illness.4 There are 2 other groups of water-borne illness at opposite ends of the disease spectrum. Minor conditions such as swimmer’s itch rash, conjunctivitis, and otitis externa might be caused by water-borne pathogens, both bacterial and viral. Swimmer’s itch is a schistosome, found across the entire border region between Canada and the United States, that burrows under the skin and causes papular summer rashes. At the extreme end of the spectrum are rare cases of diseases caused by unusual organisms such as leptospirosis,18 the duck-borne Naegleria fowleri (primary amebic encephalitis), or liver dysfunction from toxic chemicals such as microcystin-LR released by dying algal blooms in warm inland waters.4

Individuals at high risk of illness from recreational water include children younger than 10 years of age, the elderly, and the immunocompromised.14,19 Children younger than 5 years of age are at higher risk because they have not yet acquired immunity to rotavirus (unless they have been vaccinated). Beach sand is an important reservoir of bacteria and a source of illness for young children; play that includes being buried in sand poses an especially high risk.13

In one experimental study,6 swimmers (the exposure group) were required to swim for at least 10 minutes with at least 3 head immersions. This exposure, although apparently small, resulted in much higher 1-week AGI rates than in the nonswimming group (8.6% vs 1.3%, P < .001). There was a dose-response relationship: swimming in more contaminated water and swallowing more water both resulted in higher AGI rates. Sports with high water immersion or high water contact that carry high risks of water-borne infection include triathlon,18 surfing, windsurfing, kite surfing,20,21 and diving.22 Even limited-water-contact recreation, such as boating and fishing, increases the risk of AGI by 40% to 50% relative to nonwater recreational activities.23

Table 1 outlines common recreational water illness pathogens and their management.

View this table:
  • View inline
  • View popup
Table 1

Recreational water illness pathogens and their management

Role of climate change

Climate change might play an important role in water-related illness patterns. The 2 highest-probability climate-change events are more frequent heavy rainfall occurrences and more frequent and intense heat waves,24 both with probability greater than 90%. Both these climate-change effects can impair water quality. Heavy rain washes pathogens into surface water, and higher temperatures promote the growth of algae and bacteria. A US study3 demonstrated that during the previous 46 years, 68% of water-borne disease outbreaks were preceded by heavy rainfall above the 80th percentile (P < .001). At a Milwaukee pediatric ED, any rainfall in the previous 4 days increased the rate of visits for AGI by 11%.25

Chronic sequelae

Acute gastrointestinal illness might be viewed as minor, but its economic effects and long-term sequelae are substantial. An Ontario study estimated a cost per case for AGI of $1089 when over-the-counter medications, lost patient or parental work time, and costs to the health care system were included.26 The Walkerton Health Study followed up with patients who became infected with E coli or Campylobacter species from drinking water and provided surprising new information about the serious chronic sequelae of AGI. Adults who were most severely affected (measured by seeking health care) had a 38% rate of diarrhea-predominant irritable bowel syndrome (IBS), diagnosed by the Rome criteria.27 The IBS symptoms were mostly resolved by 6 years after the AGI. Children from the same outbreak also developed postinfectious IBS at higher rates (odds ratio 4.6, 95% CI 1.6 to 13.3) than those who were not exposed. Risk factors for development of IBS in the children were increased illness severity and use of antibiotics during the outbreak.28 Other chronic health sequelae of acute bacterial gastroenteritis included hypertension, proteinuria, and glomerular filtration rate below 60 mL/min.29 The latter 2 complications might occur with or without hemolytic uremic syndrome, and affect children and adults.

Case discussion

Emma is assessed in the office. Using the clinical dehydration scale, a useful triaging tool for children younger than 6 years of age (Table 2),30 she scores 5 out of a possible 8, indicating moderate to severe dehydration. She is referred to the ED for further treatment. She receives ultrarapid intravenous rehydration,31 consisting of 50 mL/kg of normal saline over 1 hour. Stool cultures are collected and she is discharged. Results of stool culture are reported 4 days later; cultures were positive for rotavirus.

View this table:
  • View inline
  • View popup
Table 2

Clinical dehydration scale: A score of 0 represents no dehydration, 1–4 represents some dehydration, and 5–8 represents moderate to severe dehydration; higher score is predictive of need for IV fluids and longer ED stay after assessment by physician (P < .01).

Studies of AGI in pediatric settings have consistently found that rotavirus causes 20% to 30% of all AGI.9,32 Approximately 29% of outpatient visits for diarrhea and 25% of diarrhea-associated ED visits in pediatric settings are due to rotavirus.31 With increasing use of the 2-dose oral rotavirus vaccine before age 1, the rate of ED visits and hospitalizations of children for rotavirus has declined by 70% to 100%.33,34 After 5 years of age, there is a high rate of naturally acquired rotavirus immunity in unvaccinated children.

Exposure history

The most important element of the office management of Emma’s case, after acute care, is trying to determine a possible source of the gastroenteritis. This begins with a food- and water-exposure history. The exposure history can be taken using a standardized approach (Figure 1),35 which should include questions to determine the child’s drinking water sources and whether there has been recreational water exposure. High-risk foods include not only undercooked beef, poultry, and fish, but also raw fruits, nuts, and vegetables.36 Emma had been swimming the previous weekend and had spent 3 to 4 hours a day playing in the shallow water and beach sand at the cottage. This is a potentially large exposure that increases the risk of recreational water–related illness. The family uses a prefilter and ultraviolet light to treat the lake water for cottage use. Emma’s parents have not tested the drinking water at the cottage for 2 years. At home they use municipally treated water for drinking.

Figure 1
  • Download figure
  • Open in new tab
Figure 1

The CH2OPD2 exposure history mnemonic device

Data from Marshall et al.35

Two important clues in this case are the season and the father’s comment about returning to the cottage on the weekend. Cottages often use treated surface water with uncomplicated treatment systems. Lakes and rivers can become contaminated in the summer by agricultural run-off following heavy rainfall, faulty septic systems near lakes and streams, and waste water effluent from treatment plants. The frequency of beach closures due to microbial contamination and algal blooms, which might harbour toxin-producing microorganisms, increases in late summer and early fall, and after heavy rainfall events. Private swimming areas at cottages are seldom monitored for water quality.

In this case, the moderate to severe dehydration (clinical dehydration scale score of 5 out of 8) made ED treatment appropriate, and stool culture results, exposure history, and timing of onset pointed to a probable recreational water source.

Stool cultures, although ordered for only 33% of patients who present to doctors with diarrhea,37 are important for diagnosing the occasional cause (such as Giardia) that is treatable with antibiotics.

Inadequately treated surface water used for drinking at the cottage was another possible source of this child’s infection. Increased risk of gastrointestinal illness in populations using private wells is well documented, but even municipal systems that rely on treated surface water might confer a higher risk than purely groundwater sources.38

As well as recognizing recreational water illness, family physicians have an important role in reminding patients who use private water systems to test 2 or 3 times yearly, including after spring run-off and after heavy rainfall events. Children younger than age 5 who will be swimming frequently have a higher risk of rotavirus infection, so immunization should be strongly recommended.

Notes

EDITOR’S KEY POINTS

  • Acute gastrointestinal illness is common, occurring in 8% to 9% of Canadians in any 4-week period. The greatest risk of bacterial, protozoal, and viral gastroenteritis during the swimming season is likely not from exposure through food consumption, drinking water, or at day care, but rather from exposure to recreational water.

  • Lakes and rivers can become contaminated, particularly in the summer, by agricultural run-off following heavy rainfall, faulty septic systems near lakes and streams, and waste water effluent from treatment plants. The frequency of beach closures due to microbial contamination and algal blooms, which might harbour toxin-producing microorganisms, increases in late summer and early fall, and after heavy rainfall.

  • Family physicians also have an important role in reminding patients who use private water systems to test the water 2 or 3 times yearly, including after spring run-off and after heavy rainfall. Children younger than age 5 who will be swimming frequently have a higher risk of rotavirus infection, so immunization should be strongly recommended.

Footnotes

  • This article has been peer reviewed.

  • This article is eligible for Mainpro-M1 credits. To earn credits, go to www.cfp.ca and click on the Mainpro link.

  • La traduction en français de cet article se trouve à www.cfp.ca dans la table des matières du numéro de mai 2013 à la page e225.

  • Contributors

    Drs Sanborn and Takaro contributed to the literature review and writing the article.

  • Competing interests

    None declared

  • Copyright© the College of Family Physicians of Canada

References

  1. ↵
    1. Prüss A
    . Review of epidemiological studies on health effects from exposure to recreational water. Int J Epidemiol 1998;27(1):1-9.
    OpenUrlAbstract/FREE Full Text
  2. ↵
    1. Wade TJ,
    2. Pai N,
    3. Eisenberg J,
    4. Colford JM Jr.
    . Do US Environmental Protection Agency water quality guidelines for recreational waters prevent gastrointestinal illness? A systematic review and meta-analysis. Environ Health Perspect 2003;111(8):1102-9.
    OpenUrlCrossRefPubMed
  3. ↵
    1. Curriero FC,
    2. Patz JA,
    3. Rose JB,
    4. Lele S
    . The association between extreme precipitation and waterborne disease outbreaks in the United States, 1948–1994. Am J Public Health 2001;91(8):1194-9.
    OpenUrlCrossRefPubMed
  4. ↵
    1. Yoder JS,
    2. Hlavsa MC,
    3. Craun GF,
    4. Hill V,
    5. Roberts V,
    6. Yu PA,
    7. et al
    . Surveillance for waterborne diseases and outbreaks associated with recreational water use and other aquatic facility-associated health events—United States, 2005–2006. MMWR Surveill Summ 2008;57(9):1-29.
    OpenUrlPubMed
  5. ↵
    1. Hlavsa MC,
    2. Roberts VA,
    3. Anderson AR,
    4. Hill VR,
    5. Kahler AM,
    6. Orr M
    . Surveillance for waterborne disease outbreaks and other health events associated with recreational water—United States, 2007–2008. MMWR Surveill Summ 2011;60(12):1-32.
    OpenUrlPubMed
  6. ↵
    1. Wiedenmann A,
    2. Krüger P,
    3. Dietz K,
    4. López-Pila JM,
    5. Szewzyk R,
    6. Botzenharts K
    . A randomized controlled trial assessing infectious disease risks from bathing in fresh recreational waters in relation to the concentration of Escherichia coli, intestinal enterococci, Clostridium perfringens, and somatic coliphages. Environ Health Perspect 2006;114(2):228-36.
    OpenUrlCrossRefPubMed
  7. ↵
    1. Sargeant JM,
    2. Majowicz SE,
    3. Snelgrove J
    . The burden of acute gastrointestinal illness in Ontario, Canada, 2005–2006. Epidemiol Infect 2008;136(4):451-60. Epub 2007 Jun 13.
    OpenUrlPubMed
  8. ↵
    1. Thomas MK,
    2. Majowicz SE,
    3. MacDougall L,
    4. Sockett PN,
    5. Kovacs SJ,
    6. Fyfe M,
    7. et al
    . Population distribution and burden of acute gastrointestinal illness in British Columbia, Canada. BMC Public Health 2006;6:307.
    OpenUrlCrossRefPubMed
  9. ↵
    1. Yee EL,
    2. Staat MA,
    3. Azimi P,
    4. Bernstein DI,
    5. Ward RL,
    6. Schubert C,
    7. et al
    . Burden of rotavirus disease among children visiting pediatric emergency departments in Cincinnati, Ohio, and Oakland, California, in 1999–2000. Pediatrics 2008;122(5):971-7.
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. Denno DM,
    2. Keene WE,
    3. Hutter CM,
    4. Koepsell JK,
    5. Patnode M,
    6. Flodin-Hursh,
    7. et al
    . Tri-county comprehensive assessment of risk factors for sporadic reportable bacterial enteric infection in children. J Infect Dis 2009;199(4):467-76.
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. Valderrama AL,
    2. Hlavsa MC,
    3. Cronquist A,
    4. Cosgrove S,
    5. Johnston SP,
    6. Roberts JM,
    7. et al
    . Multiple risk factors associated with a large statewide increase in cryptosporidiosis. Epidemiol Infect 2009;137(12):1781-8. Epub 2009 May 27.
    OpenUrlCrossRefPubMed
  12. ↵
    1. Soller JA,
    2. Schoen ME,
    3. Bartrand T,
    4. Ravenscroft JE,
    5. Ashbolt NJ
    . Estimated human health risks from exposure to recreational waters impacted by human and non-human sources of faecal contamination. Water Res 2010;44(16):4674-91. Epub 2010 Jun 25.
    OpenUrlCrossRefPubMed
  13. ↵
    1. Heaney CD,
    2. Sams E,
    3. Wing S,
    4. Marshall S,
    5. Brenner K,
    6. Dufour AP,
    7. et al
    . Contact with beach sand among beachgoers and risk of illness. Am J Epidemiol 2009;170(2):164-72. Epub 2009 Jun 18.
    OpenUrlAbstract/FREE Full Text
  14. ↵
    1. Wade TJ,
    2. Calderon RL,
    3. Brenner KP,
    4. Sams E,
    5. Beach M,
    6. Haugland R,
    7. et al
    . High sensitivity of children to swimming-associated gastrointestinal illness: results using a rapid assay of recreational water quality. Epidemiology 2008;19(3):375-83.
    OpenUrlCrossRefPubMed
  15. ↵
    1. Wu J,
    2. Long C,
    3. Das D,
    4. Dorner SM
    . Are microbial indicators and pathogens correlated? A statistical analysis of 40 years of research. J Water Health 2011;9(2):265-78.
    OpenUrlPubMed
  16. ↵
    1. Soller JA,
    2. Bartrand T,
    3. Ashbolt NJ,
    4. Ravenscroft J,
    5. Wade TJ
    . Estimating the primary etiologic agents in recreational freshwaters impacted by human sources of faecal contamination. Water Res 2010;44(16):4736-47. Epub 2010 Jul 29.
    OpenUrlCrossRefPubMed
  17. ↵
    1. Papastergiou P,
    2. Mouchtouri VA,
    3. Rachiotis G,
    4. Pinaka O,
    5. Katsiaflaka A,
    6. Hadjichristodoulou C
    . Bather density as a predominant factor for health effects related to recreational bathing: results from the Greek bathers cohort study. Mar Pollut Bull 2011;62(3):590-5. Epub 2010 Dec 22.
    OpenUrlPubMed
  18. ↵
    1. Morgan J,
    2. Bornstein SL,
    3. Karpati AM,
    4. Bruce M,
    5. Bolin CA,
    6. Austin CC,
    7. et al
    . Outbreak of leptospirosis among triathlon participants and community residents in Springfield, Illinois, 1998. Clin Infect Dis 2002;34(12):1593-9. Epub 2002 May 24.
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. Graczyk TK,
    2. Sunderland D,
    3. Tamang L,
    4. Shields TM,
    5. Lucy FE,
    6. Breysse PN
    . Quantitative evaluation of the impact of bather density on levels of human-virulent microsporidian spores in recreational water. Appl Environ Microbiol 2007;73(13):4095-9. Epub 2007 May 4.
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Dwight RH,
    2. Baker DB,
    3. Semenza JC,
    4. Olson BH
    . Health effects associated with recreational coastal water use: urban versus rural California. Am J Public Health 2004;94(4):565-7.
    OpenUrlCrossRefPubMed
  21. ↵
    1. Turbow DJ,
    2. Kent EE,
    3. Jiang SC
    . Web-based investigation of water associated illness in marine bathers. Environ Res 2008;106(1):101-9. Epub 2007 Aug 1.
    OpenUrlPubMed
  22. ↵
    1. Schijven J,
    2. de Roda Husman AM
    . A survey of diving behaviour and accidental water ingestion among Dutch occupational and sport divers to assess the risk of infection with waterborne pathogenic microorganisms. Environ Health Perspect 2006;114(5):712-7.
    OpenUrlPubMed
  23. ↵
    1. Dorevitch S,
    2. Pratap P,
    3. Wroblewski M,
    4. Hryhorczuk DO,
    5. Li H,
    6. Liu LC,
    7. et al
    . Health risks of limited-contact water recreation. Environ Health Perspect 2012;120(2):192-7. Epub 2011 Oct 21.
    OpenUrlPubMed
  24. ↵
    1. Luber G,
    2. Prudent N
    . Climate change and human health. Trans Am Clin Climatol Assoc 2009;120:113-7.
    OpenUrlPubMed
  25. ↵
    1. Drayna P,
    2. McLellan S,
    3. Simpson P,
    4. Li SH,
    5. Gorelick MH
    . Association between rainfall and pediatric emergency visits for acute gastrointestinal illness. Environ Health Perspect 2010;118(10):1439-43. Epub 2010 May 24.
    OpenUrlCrossRefPubMed
  26. ↵
    1. Majowicz SE,
    2. McNab WB,
    3. Sockett P,
    4. Henson TS,
    5. Doré K,
    6. Edge VL,
    7. et al
    . Burden and cost of gastroenteritis in a Canadian community. J Food Prot 2006;69(3):651-9.
    OpenUrlPubMed
  27. ↵
    1. Marshall JK,
    2. Thabane M,
    3. Garg AX,
    4. Clark WF,
    5. Salvadori M,
    6. Collins SM
    . Incidence and epidemiology of irritable bowel syndrome after a large waterborne disease outbreak of bacterial dysentery. Gastroenterology 2006;131(2):445-50.
    OpenUrlCrossRefPubMed
  28. ↵
    1. Thabane M,
    2. Simunovic M,
    3. Akhtar-Danesh N,
    4. Garg AX,
    5. Clark WF,
    6. Collins SM,
    7. et al
    . An outbreak of acute bacterial gastroenteritis is associated with an increased incidence of irritable bowel syndrome in children. Am J Gastroenterol 2010;105(4):933-9. Epub 2010 Feb 23.
    OpenUrlCrossRefPubMed
  29. ↵
    1. Garg AX,
    2. Moist L,
    3. Matsell D,
    4. Thiessen-Philbrook HR,
    5. Haynes RB,
    6. Suri RS,
    7. et al
    . Risk of hypertension and reduced kidney function after acute gastroenteritis from bacteria-contaminated drinking water. CMAJ 2005;173(3):261-8. Epub 2005 May 27.
    OpenUrlAbstract/FREE Full Text
  30. ↵
    1. Bailey B,
    2. Gravel J,
    3. Goldman RD,
    4. Friedman JN,
    5. Parkin PC
    . External validation of the clinical dehydration scale for children with acute gastroenteritis. Acad Emerg Med 2010;17(6):583-8.
    OpenUrlCrossRefPubMed
  31. ↵
    1. Nager AL,
    2. Wang VJ
    . Comparison of ultrarapid and rapid intravenous hydration in pediatric patients with dehydration. Am J Emerg Med 2010;28(2):123-9.
    OpenUrlCrossRefPubMed
  32. ↵
    1. Klein EJ,
    2. Boster DR,
    3. Stapp JR,
    4. Wells JG,
    5. Qin X,
    6. Clausen CR,
    7. et al
    . Diarrhea etiology in a children’s hospital emergency department: a prospective cohort study. Clin Infect Dis 2006;43(7):807-13.
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Dennehy PH
    . Effects of vaccine on rotavirus disease in the pediatric population. Curr Opin Pediatr 2012;24(1):76-84.
    OpenUrlCrossRefPubMed
  34. ↵
    1. Goldman RD
    . Effectiveness of rotavirus vaccine in preventing severe acute gastroenteritis in children. Can Fam Physician 2012;58:270-1.
    OpenUrlAbstract/FREE Full Text
  35. ↵
    1. Marshall L,
    2. Weir E,
    3. Abelsohn A,
    4. Sanborn M
    . Identifying and managing adverse environmental health effects: 1. Taking an exposure history. CMAJ 2002;166(8):1049-55.
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. Centers for Disease Control and Prevention
    . Surveillance for foodborne disease outbreaks—United States, 2008. MMWR Morb Mortal Wkly Rep 2011;60(35):1197-202.
    OpenUrlPubMed
  37. ↵
    1. Majowicz SE,
    2. Edge VL,
    3. Fazil A,
    4. McNabb WB,
    5. Dore KA,
    6. Sockett PN,
    7. et al
    . Estimating the under-reporting rate for infectious gastrointestinal illness in Ontario. Can J Public Health 2005;96(3):178-81.
    OpenUrlPubMed
  38. ↵
    1. Uhlmann S,
    2. Galanis E,
    3. Takaro TK,
    4. Mak S,
    5. Gustafson L,
    6. Embree G,
    7. et al
    . Where’s the pump? Associating sporadic enteric disease with drinking water using a geographic information system, in British Columbia, Canada, 1996–2005. J Water Health 2009;7(4):692-8.
    OpenUrlCrossRefPubMed
PreviousNext
Back to top

In this issue

Canadian Family Physician: 59 (5)
Canadian Family Physician
Vol. 59, Issue 5
1 May 2013
  • Table of Contents
  • About the Cover
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on The College of Family Physicians of Canada.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Recreational water–related illness
(Your Name) has sent you a message from The College of Family Physicians of Canada
(Your Name) thought you would like to see the The College of Family Physicians of Canada web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Recreational water–related illness
Margaret Sanborn, Tim Takaro
Canadian Family Physician May 2013, 59 (5) 491-495;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Share
Recreational water–related illness
Margaret Sanborn, Tim Takaro
Canadian Family Physician May 2013, 59 (5) 491-495;
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Case introduction
    • Sources of information
    • Main message
    • Case discussion
    • Notes
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • Info & Metrics
  • PDF

Related Articles

  • Maladies reliées aux loisirs aquatiques
  • The fine things on earth
  • PubMed
  • Google Scholar

Cited By...

  • Limiting swimming pool outbreaks of cryptosporidiosis - the roles of regulations, staff, patrons and research
  • A little deeper
  • The fine things on earth
  • Google Scholar

More in this TOC Section

Practice

  • Managing type 2 diabetes in primary care during COVID-19
  • Effectiveness of dermoscopy in skin cancer diagnosis
  • Spontaneous pneumothorax in children
Show more Practice

Clinical Review

  • Approach to steatotic liver disease in the office
  • Foreskin care
  • Common white lesions of the oral cavity
Show more Clinical Review

Similar Articles

Navigate

  • Home
  • Current Issue
  • Archive
  • Collections - English
  • Collections - Française

For Authors

  • Authors and Reviewers
  • Submit a Manuscript
  • Permissions
  • Terms of Use

General Information

  • About CFP
  • About the CFPC
  • Advertisers
  • Careers & Locums
  • Editorial Advisory Board
  • Subscribers

Journal Services

  • Email Alerts
  • Twitter
  • LinkedIn
  • Instagram
  • RSS Feeds

Copyright © 2025 by The College of Family Physicians of Canada

Powered by HighWire