Skip to main content
Log in

Management of Glaucoma: Focus on Pharmacological Therapy

  • Therapy In Practice
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Glaucoma represents a major cause of vision loss throughout the world. Primary open-angle glaucoma, the most common form of glaucoma, is a chronic, progressive disease often, though not always, accompanied by elevated intraocular pressure (IOP). In this disorder, retinal ganglion cell loss and excavation of the optic nerve head produce characteristic peripheral visual field deficits. Patients with normal-tension glaucoma present with typical visual field and optic nerve head changes, without a documented history of elevated IOP. A variety of secondary causes, such as pigment dispersion syndrome and ocular trauma, can result in glaucoma as well. Treatment of all forms of glaucoma consists of reducing IOP. With proper treatment, progression of this disease can often be delayed or prevented.

Treatment options for glaucoma include medications, laser therapy and incisional surgery. Laser techniques for the reduction of IOP include argon laser trabeculoplasty and selective laser trabeculoplasty. Both techniques work by increasing outflow of aqueous humour through the trabecular meshwork. Surgical options for glaucoma treatment include trabeculectomy, glaucoma drainage tube implantation and ciliary body cyclodestruction. While each of these types of procedures is effective at lowering IOP, therapy usually begins with medications. Medications lower IOP either by reducing the production or by increasing the rate of outflow of aqueous humour within the eye.

Currently, there are five major classes of drugs used for the treatment of glaucoma: (i) cholinergics (acetylcholine receptor agonists); (ii) adrenoceptor agonists; (iii) carbonic anhydrase inhibitors (CAIs); (iv) β-adrenoceptor antagonists; and (v) prostaglandin analogues (PGAs). Treatment typically begins with the selection of an agent for IOP reduction. Although β-adrenoceptor antagonists are still commonly used by many clinicians, the PGAs are playing an increasingly important role in the first-line therapy of glaucoma. Adjunctive agents, such as α-adrenoceptor agonists and CAIs are often effective at providing additional reduction in IOP for patients not controlled on monotherapy. As with any chronic disease, effective treatment depends on minimising the adverse effects of therapy and maximising patient compliance. The introduction of a variety of well tolerated and potent medications over the past few years now allows the clinician to choose a treatment regimen on an individual patient basis and thereby treat this disorder more effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Fig. 1
Table III
Fig. 2
Table IV

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Quigley HA, Nickells RW, Kerrigan LA, et al. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci 1995 Apr; 36(5): 774–86

    PubMed  CAS  Google Scholar 

  2. Thylefors B, Negrel AD, Pararajasegaram R, et al. Global data on blindness. Bull World Health Organ 1995; 73: 115–21

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Sommer A, Tielsch JM, Katz J, et al. Racial differences in the cause-specific prevalence of blindness in East Baltimore. N Engl J Med 1991 Nov; 325(20): 1412–7

    Article  PubMed  CAS  Google Scholar 

  4. Rodriguez J, Sanchez R, Munoz B, et al. Causes of blindness and visual impairment in a population-based sample of US Hispanics. Ophthalmology 2002 Apr; 109(4): 737–43

    Article  PubMed  Google Scholar 

  5. Quigley HA, Vitale S. Models of glaucoma prevalence and incidence in the United States. Invest Ophthalmol Vis Sci 1997 Jan; 38(1): 83–91

    PubMed  CAS  Google Scholar 

  6. American Academy of Ophthalmology preferred practice pattern for primary open-angle glaucoma. San Francisco (CA): American Academy of Ophthalmology, 2003: 3

  7. Drance SM, Sweeney VP, Morgan RW, et al. Studies of factors involved in the production of low tension glaucoma. Arch Ophthalmol 1973 Jun; 89(6): 457–65

    Article  PubMed  CAS  Google Scholar 

  8. Migdal C, Gregory W, Hitchings R. Long-term functional outcome after early surgery compared with laser and medicine in open-angle glaucoma. Ophthalmology 1994 Oct; 101(10): 1651–6

    Article  PubMed  CAS  Google Scholar 

  9. Shiose Y, Kitazawa Y, Tsukahara S, et al. Epidemiology of glaucoma in Japan: a nationwide glaucoma survey. Jpn J Ophthalmol 1991; 35(2): 133–55

    PubMed  CAS  Google Scholar 

  10. Drance SM, Morgan RW, Sweeney VP. Shock-induced optic neuropathy: a cause of nonprogressive glaucoma. N Engl J Med 1973 Feb; 288(8): 392–8

    Article  PubMed  CAS  Google Scholar 

  11. Lewis RA, Hayreh SS, Phelps CD. Optic disk and visual field correlations in primary open-angle and low-tension glaucoma. Am J Ophthalmol 1983 Aug; 96(2): 148–5

    Article  PubMed  CAS  Google Scholar 

  12. Chumbley LC, Brubaker RF. Low-tension glaucoma. Am J Ophthalmol 1976 Jun; 81(6): 761–8

    Article  PubMed  CAS  Google Scholar 

  13. Caprioli J, Spaeth GL. Comparison of visual field defects in the low-tension glaucomas with those in the high-tension glaucomas. Am J Ophthalmol 1984 Jun; 97(6): 730–7

    Article  PubMed  CAS  Google Scholar 

  14. Kahn HA, Milton RC. Alternative definitions of open-angle glaucoma: effect on prevalence and associations in the Framingham eye study. Arch Ophthalmol 1980 Dec; 98(6): 2172–7

    Article  PubMed  CAS  Google Scholar 

  15. Kass MA, Heuer DK, Higginbotham EJ, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002 Jun; 120(6): 701–13

    Article  PubMed  Google Scholar 

  16. Campbell DG. Pigmentary dispersion and glaucoma: a new theory. Arch Ophthalmol 1979 Sep; 97(9): 1667–72

    Article  PubMed  CAS  Google Scholar 

  17. Hollows FC, Graham PA. Intra-ocular pressure, glaucoma, and glaucoma suspects in a defined population. Br J Ophthalmol 1966 Oct; 50(10): 570–86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Arkell SM, Lightman DA, Sommer A, et al. The prevalence of glaucoma among Eskimos of northwest Alaska. Arch Ophthalmol 1987 Apr; 105(4): 482–5

    Article  PubMed  CAS  Google Scholar 

  19. McLaren JW, Trocme SD, Relf S, et al. Rate of flow of aqueous humor determined from measurements of aqueous flare. Invest Ophthalmol Vis Sci 1990 Feb; 31(2): 339–46

    PubMed  CAS  Google Scholar 

  20. Becker B. The decline in aqueous secretion and outflow facility with age. Am J Ophthalmol 1958 Nov; 46(5): 731–6

    Article  PubMed  CAS  Google Scholar 

  21. Hayashi M, Yablonski ME, Boxrud C, et al. Decreased formation of aqueous humour in insulin-dependent diabetic patients. Br J Ophthalmol 1989 Aug; 73(8): 621–3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Pederson JE. Ocular hypotony. Trans Ophthalmol Soc U K 1986; 105 (Pt 2): 220–6

    PubMed  Google Scholar 

  23. Diestelhorst M, Krieglstein GK. The effect of the water-drinking test on aqueous humor dynamics in healthy volunteers. Graefes Arch Clin Exp Ophthalmol 1994 Mar; 232(3): 145–7

    Article  PubMed  CAS  Google Scholar 

  24. Reddy VN. Dynamics of transport systems in the eye. Invest Ophthalmol Vis Sci 1979 Oct; 18(10): 1000–18

    PubMed  CAS  Google Scholar 

  25. Bill A. Blood circulation and fluid dynamics of the eye. Physiol Rev 1975 Jul; 55(3): 383–417

    Article  PubMed  CAS  Google Scholar 

  26. Toris CB, Pederson JE. Aqueous humor dynamics in experimental iridocyclitis. Invest Ophthalmol Vis Sci 1987 Mar; 28(3): 477–81

    PubMed  CAS  Google Scholar 

  27. Soltau JB, Zimmerman TJ. Changing paradigms in the medical treatment of glaucoma. Surv Ophthalmol 2002; 47Suppl. 1: S2–5

    Article  PubMed  Google Scholar 

  28. Realini T, Fechtner RD. 56,000 ways to treat glaucoma. Ophthalmology 2002 Nov; 109(11): 1955–6

    Article  PubMed  Google Scholar 

  29. Diggory P, Franks W. Glaucoma: systemic side effects of topical medical therapy: a common and under recognized problem. J R Soc Med 1994 Oct; 87(10): 575–6

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Whitson JT, Love R, Brown RH, et al. The effect of reduced eyedrop size and eyelid closure on the therapeutic index of phenylephrine. Am J Ophthalmol 1993 Mar; 115(3): 357–9

    Article  PubMed  CAS  Google Scholar 

  31. von Weber A. Die Ursache des Glaukoms. Albr Graefes Arch Ophthalmol 1877; 23: 91–4

    Google Scholar 

  32. Drance SM, Nash PA. The dose response of human intraocular pressure to pilocarpine. Can J Ophthalmol 1971 Jan; 6(1): 9–13

    PubMed  CAS  Google Scholar 

  33. Crawford K, Kaufman PL. Pilocarpine antagonizes prostaglandin F2 alpha-induced ocular hypotension in monkeys: evidence for enhancement of uveoscleral outflow by prostaglandin F2 alpha. Arch Ophthalmol 1987 Aug; 105(8): 1112–6

    Article  PubMed  CAS  Google Scholar 

  34. Barsam PC. Comparison of the effects of pilocarpine and echothiophate on intraocular pressure and outflow facility. Am J Ophthalmol 1972 May; 73(5): 742–9

    Article  PubMed  CAS  Google Scholar 

  35. Ellis PP, Esterdahl M. Echothiophate iodide therapy in children: effect upon blood Cholinesterase levels. Arch Ophthalmol 1967 May; 77(5): 598–601

    Article  PubMed  CAS  Google Scholar 

  36. Thoft RA. Incidence of lens changes in patients treated with echothiophate iodide. Arch Ophthalmol 1968 Sep; 80(3): 317–20

    Article  PubMed  CAS  Google Scholar 

  37. O’Brien CS, Swan KD. Carbaminoylcholinechloride in the treatment of glaucoma simplex. Arch Ophthalmol 1942 Feb; 27(2): 253–7

    Article  Google Scholar 

  38. Reichert RW, Shields MB, Stewart WC. Intraocular pressure response to replacing pilocarpine with carbachol. Am J Ophthalmol 1988 Dec; 106(6): 747–8

    Article  PubMed  CAS  Google Scholar 

  39. Townsend DJ, Brubaker RF. Immediate effect of epinephrine on aqueous formation in the normal human eye as measured by fluorophotometry. Invest Ophthalmol Vis Sci 1980 Mar; 19(3): 256

    PubMed  CAS  Google Scholar 

  40. Nagataki S, Brubaker RF. Early effect of epinephrine on aqueous formation in the normal human eye. Ophthalmology 1981 Mar; 88(3): 278–82

    Article  PubMed  CAS  Google Scholar 

  41. Becker B, Pettit TH, Gay AJ. Topical epinephrine therapy of open angle glaucoma. Arch Ophthalmol 1961 Aug; 66(2): 219–25

    Article  PubMed  CAS  Google Scholar 

  42. van Alphen GW. The adrenergic receptors of the intraocular muscles of the human eye. Invest Ophthalmol 1976 Jun; 15(6): 502–5

    PubMed  Google Scholar 

  43. Kolker AE, Becker B. Epinephrine maculopathy. Arch Ophthalmol 1968 May; 79(5): 552–62

    Article  PubMed  CAS  Google Scholar 

  44. Cashwell LF, Shields MB, Reed JW. Adrenochrome pigmentation. Arch Ophthalmol 1977 Mar; 95(3): 514–5

    Article  PubMed  CAS  Google Scholar 

  45. McCarthy RW, LeBlanc R. A ‘black cornea’ secondary to topical epinephrine. Can J Ophthalmol 1976 Oct; 11(4): 336–40

    PubMed  CAS  Google Scholar 

  46. Mandell AI, Stentz F, Kitabchi AE. Dipivalyl epinephrine: a new pro-drug in the treatment of glaucoma. Ophthalmology 1978 Mar; 85(3): 268–75

    Article  PubMed  CAS  Google Scholar 

  47. Kass MA, Mandell AI, Goldberg I, et al. Dipivefrin and epinephrine treatment of elevated intraocular pressure: a comparative study. Arch Ophthalmol 1979 Oct; 97(10): 1865–6

    Article  PubMed  CAS  Google Scholar 

  48. Lee DA, Topper JE, Brubaker RF. Effect of Clonidine on aqueous humor flow in normal human eyes. Exp Eye Res 1984 Mar; 38(3): 239–46

    Article  PubMed  CAS  Google Scholar 

  49. Toris CB, Tafoya ME, Camras CB, et al. Effects of apraclonidine on aqueous humor dynamics in human eyes. Ophthalmology 1995 Mar; 102(3): 456–61

    Article  PubMed  CAS  Google Scholar 

  50. Robin AL. Short-term effects of unilateral 1% apraclonidine therapy. Arch Ophthalmol 1988 Jul; 106(7): 912–5

    Article  PubMed  CAS  Google Scholar 

  51. Butler P, Mannschreck M, Lin S, et al. Clinical experience with the long-term use of 1% apraclonidine: incidence of allergic reactions. Arch Ophthalmol 1995 Mar; 113(3): 293–6

    Article  PubMed  CAS  Google Scholar 

  52. Toris CB, Gleason ML, Camras CB, et al. Effects of brimonidine on aqueous humor dynamics in human eyes. Arch Ophthalmol 1995 Dec; 113(12): 1514–7

    Article  PubMed  CAS  Google Scholar 

  53. Schuman JS. Clinical experience with brimonidine 0.2% and timolol 0.5% in glaucoma and ocular hypertension. Surv Ophthalmol 1996 Nov; 41Suppl. 1: S27–37

    Article  PubMed  Google Scholar 

  54. Schuman JS, Horwitz B, Choplin NT, et al. A 1-year study of brimonidine twice daily in glaucoma and ocular hypertension: a controlled, randomized, multicenter clinical trial. Chronic Brimonidine Study Group. Arch Ophthalmol 1997 Jul; 115(7): 847–52

    Article  PubMed  CAS  Google Scholar 

  55. Serie JB. A comparison of the safety and efficacy of twice daily brimonidine 0.2% versus betaxolol 0.25% in subjects with elevated intraocular pressure: the Brimonidine Study Group III. Surv Ophthalmol 1996 Nov; 41Suppl. 1: S39–47

    Google Scholar 

  56. Wilkerson M, Lewis RA, Shields MB. Follicular conjunctivitis associated with apraclonidine. Am J Ophthalmol 1991 Jan; 111(1): 105–6

    Article  PubMed  CAS  Google Scholar 

  57. Stewart WC, Ritch R, Shin DH, et al. The efficacy of apraclonidine as an adjunct to timolol therapy. Apraclonidine Adjunctive Therapy Study Group. Arch Ophthalmol 1995 Mar; 113(3): 287–92

    Article  PubMed  CAS  Google Scholar 

  58. Stewart WC, Laibovitz R, Horwitz B, et al. A 90-day study of the efficacy and side effects of 0.25% and 0.5% apraclonidine vs. 0.5% timolol (Apraclonidine Primary Therapy Study Group). Arch Ophthalmol 1996 Aug; 114(8): 938–42

    Article  PubMed  CAS  Google Scholar 

  59. Katz LJ. Twelve-month evaluation of brimonidine-purite versus brimonidine in patients with glaucoma or ocular hypertension. J Glaucoma 2002 Apr; 11(2): 119–26

    Article  PubMed  Google Scholar 

  60. Becker B. Decrease in intraocular pressure in man by a carbonic anhydrase inhibitor (Diamox). Am J Ophthalmol 1954 Jan; 37(1): 13–7

    Article  PubMed  CAS  Google Scholar 

  61. Dailey RA, Brubaker RF, Bourne WM. The effects of timolol maleate and acetazolamide on the rate of aqueous formation in normal human subjects. Am J Ophthalmol 1982 Feb; 93(2): 232–7

    Article  PubMed  CAS  Google Scholar 

  62. Fraunfelder FT, Meyer SM, Bagby Jr GC, et al. Hematologic reactions to carbonic anhydrase inhibitors. Am J Ophthalmol 1985 Jul; 100(1): 79–81

    Article  PubMed  CAS  Google Scholar 

  63. Strahlman E, Tipping R, Vogel R. A double-masked, randomized 1-year study comparing dorzolamide (Trusopt), timolol, and betaxolol. International Dorzolamide Study Group. Arch Ophthalmol 1995 Aug; 113(8): 1009–16

    Article  PubMed  CAS  Google Scholar 

  64. Boyle JE, Ghosh K, Gieser DK, et al. A randomized trial comparing the dorzolamide-timolol combination given twice daily to monotherapy with timolol and dorzolamide. Ophthalmology 1998 Oct; 105(10): 1945–51

    Article  PubMed  CAS  Google Scholar 

  65. Kimal AM, Topalkara A, Guier C. Additive effect of latanoprost and dorzolamide in patients with elevated intraocular pressure. Int Ophthalmol 1998 Jan; 22(1): 37–42

    Article  Google Scholar 

  66. Stewart WC, Sharpe ED, Harbin TS, et al. Brimonidine 0.2% versus dorzolamide 2% each given three times daily to reduce intraocular pressure. Am J Ophthalmol 2000 Jun; 129(6): 723–7

    Article  PubMed  CAS  Google Scholar 

  67. Whitson JT, Henry C, Hughes B, et al. Comparison of the safety and efficacy of dorzolamide 2% and brimonidine 0.2% in patients with glaucoma or ocular hypertension. J Glaucoma 2004 Apr; 13(2): 168–73

    Article  PubMed  Google Scholar 

  68. Silver LH. The efficacy and safety of brinzolamide 1% ophthalmic suspension (Azopt) as a primary therapy in patients with open-angle glaucoma or ocular hypertension. Brinzolamide Primary Therapy Study Group. Surv Ophthalmol 2000 Jan; 44Suppl. 2: S155–62

    Google Scholar 

  69. Barnebey H, Kwok SY. Patients’ acceptance of a switch from dorzolamide to brinzolamide for the treatment of glaucoma in a clinical practice setting. Clin Ther 2000 Oct; 22(10): 1204–12

    Article  PubMed  CAS  Google Scholar 

  70. Sugrue MF, Mallorga P, Schwam H, et al. A comparison of L-671,152 and MK-927, two topically effective ocular hypotensive carbonic anhydrase inhibitors, in experimental animals. Curr Eye Res 1990 Jun; 9(6): 607–15

    Article  PubMed  CAS  Google Scholar 

  71. Konowal A, Morrison JC, Brown SVL, et al. Irreversible corneal decompensation in patients treated with topical dorzolamide. Am J Ophthalmol 1999 Apr; 127(4): 403–6

    Article  PubMed  CAS  Google Scholar 

  72. Silver LH. Clinical efficacy and safety of brinzolamide (Azopt), a new topical carbonic anhydrase inhibitor for primary open-angle glaucoma and ocular hypertension. Am J Ophthalmol 1998 Sep; 126(3): 400–8

    Article  PubMed  CAS  Google Scholar 

  73. Coakes RL, Brubaker RF. The mechanism of timolol in lowering intraocular pressure in the normal eye. Arch Ophthalmol 1978 Nov; 96(11): 2045–8

    Article  PubMed  CAS  Google Scholar 

  74. Steinen RF, Thomas JV, Boger III WP. Long-term drift and continued efficacy after multiyear timolol therapy. Arch Ophthalmol 1981 Jan; 99(1): 100–3

    Article  Google Scholar 

  75. Kobelt G, Jonsson L, Gerdtham U, et al. Direct costs of glaucoma management following initiation of medical therapy: a simulation model based on an observational study of glaucoma treatment in Germany. Graefes Arch Clin Exp Ophthalmol 1998 Nov; 236(11): 811–21

    Article  PubMed  CAS  Google Scholar 

  76. Topper JE, Brubaker RF. Effects of timolol, epinephrine, and acetazolamide on aqueous flow during sleep. Invest Ophthalmol Vis Sci 1985 Oct; 26(10): 1315–9

    PubMed  CAS  Google Scholar 

  77. Zimmerman TJ, Kaufman HE. Timolol: a beta-adrenergic blocking agent for the treatment of glaucoma. Arch Ophthalmol 1977 Apr; 95(4): 601–4

    Article  PubMed  CAS  Google Scholar 

  78. Wilson RP, Kanal N, Spaeth GL. Timolol: its effectiveness in different types of glaucoma. Ophthalmology 1979 Jan; 86(1): 43–50

    Article  PubMed  CAS  Google Scholar 

  79. Katz IM, Berger ET. Effects of iris pigmentation on response of ocular pressure to timolol. Surv Ophthalmol 1979 May; 23(6): 395–8

    Article  PubMed  CAS  Google Scholar 

  80. Shedden A, Laurence J, Tipping R, et al. Efficacy and tolerability of timolol maleate ophthalmic gel-forming solution in adults with primary open-angle glaucoma or ocular hypertension: a six-month, double-masked, multicenter study. Clin Ther 2001 Mar; 23(3): 440–50

    Article  PubMed  CAS  Google Scholar 

  81. Stewart WC, Sharpe ED, Stuart JA, et al. The safety and efficacy of timolol 0.5% in xanthum gum versus timolol gel forming solution 0.5%. Curr Eye Res 2002 May 24(5): 387–391

    Article  PubMed  Google Scholar 

  82. Derick RJ, Robin AL, Tielsch J, et al. Once-daily versus twice-daily levobunolol (0.5%) therapy: a cross-over study. Ophthalmology 1992 Dec; 99(3): 424–9

    Article  PubMed  CAS  Google Scholar 

  83. Boozman FW, Carriker R, Foerster R, et al. Long-term evaluation of 0.25% levobunolol and timolol for therapy for elevated intraocular pressure. Arch Ophthalmol 1988 May; 106(5): 614–8

    Article  PubMed  Google Scholar 

  84. Geyer O, Lazar M, Novack GD, et al. Levobunolol compared with timolol: a four-year study. Br J Ophthalmol 1988 Dec; 72(12): 892–6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Scoville B, Mueller B, White BG, et al. A double-masked comparison of Carteolol and timolol in ocular hypertension. Am J Ophthalmol 1988 Feb; 105(2): 150–4

    Article  PubMed  CAS  Google Scholar 

  86. Stewart WC, Shields MB, Allen RC, et al. A 3-month comparison of 1% and 2% Carteolol and 0.5% timolol in open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol 1991 Mar; 229(3): 258–61

    Article  PubMed  CAS  Google Scholar 

  87. Freedman SF, Freedman NJ, Shields MB, et al. Effects of ocular Carteolol and timolol on plasma high-density lipoprotein cholesterol level. Am J Ophthalmol 1993 Nov; 116(5): 600–11

    Article  PubMed  CAS  Google Scholar 

  88. Serie JB, Lustgarten JS, Podos SM. A clinical trial of metipranolol, a noncardioselective beta-adrenergic antagonist, in ocular hypertension. Am J Ophthalmol 1991 Sep; 112(3): 302–7

    Article  Google Scholar 

  89. Muller O, Knobel HR. Effectiveness and tolerance of metipranolol: results of a multi-center long-term study in Switzerland. Klin Monatsbl Augenheilkd 1986 Jan; 188(1): 62–3

    Article  PubMed  CAS  Google Scholar 

  90. Krieglstein GK, Novack GD, Voepel E, et al. Levobunolol and metipranolol: comparative ocular hypotensive efficacy, safety, and comfort. Br J Ophthalmol 1987 Apr; 71(4): 250–3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Coakes RL, Mackie IA, Seal DV. Effects of long-term treatment with timolol on lacrimal gland function. Br J Ophthalmol 1981 Sep; 65(9): 603–5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Akingbehin T, Villada JR. Metipranolol-associated granulomatous anterior uveitis. Br J Ophthalmol 1991 Sep; 75(9): 5519–23

    Article  Google Scholar 

  93. Melles RB, Wong IG. Metipranolol-associated granulomatous iritis. Am J Ophthalmol 1994 Dec; 118(6): 712–5

    Article  PubMed  CAS  Google Scholar 

  94. McMahon CD, Shaffer RN, Hoskins HDJ, et al. Adverse effects experienced by patients taking timolol. Am J Ophthalmol 1979 Oct; 88(4): 736–8

    Article  PubMed  CAS  Google Scholar 

  95. Van Buskirk EM. Adverse reactions from timolol administration. Ophthalmology 1980 May; 87(5): 447–50

    Article  PubMed  Google Scholar 

  96. Velde TM, Kaiser FE. Ophthalmic timolol treatment causing altered hypoglycemic response in a diabetic patient. Arch Intern Med 1983 Aug; 143(8): 1627

    Article  PubMed  CAS  Google Scholar 

  97. Coppeto JR. Timolol-associated myasthenia gravis. Am J Ophthalmol 1984 Aug; 98(2): 244–5

    Article  PubMed  CAS  Google Scholar 

  98. Fraunfelder FT. Interim report: national registry of possible drug-induced ocular side effects. Ophthalmology 1980 Feb; 87(2): 87–90

    Article  PubMed  CAS  Google Scholar 

  99. Reiss GR, Brubaker RF. The mechanism of betaxolol, a new ocular hypotensive agent. Ophthalmology 1983 Nov; 90(11): 1369–72

    Article  PubMed  CAS  Google Scholar 

  100. Caldwell Dr, Salisbury CR, Guzek JP. Effects of topical betaxolol in ocular hypertensive patients. Arch Ophthalmol 1984 Apr; 102(4): 539–40

    Article  PubMed  CAS  Google Scholar 

  101. Feghali JG, Kaufman PL. Decreased intraocular pressure in the hypertensive human eye with betaxolol, a beta 1-adrenergic antagonist. Am J Ophthalmol 1985 Dec; 100(6): 777–82

    Article  PubMed  CAS  Google Scholar 

  102. Collignon-Brach J. Long-term effect of ophthalmic beta-adrenoceptor antagonists on intraocular pressure and retinal sensitivity in primary open-angle glaucoma. Curr Eye Res 1992 Jan; 11(1): 1–3

    Article  PubMed  CAS  Google Scholar 

  103. Messmer C, Flammer J, Stumpfig D. Influence of betaxolol and timolol on the visual fields of patients with glaucoma. Am J Ophthalmol 1991 Dec; 112(6): 678–1

    Article  PubMed  CAS  Google Scholar 

  104. Hoste AM, Sys SU. The relaxant action of betaxolol on isolated bovine retinal microarteries. Curr Eye Res 1994 Jul; 13(7): 483–7

    Article  PubMed  CAS  Google Scholar 

  105. Hoste AM. Ca2+ channel blocking activity of propranolol and betaxolol in isolated bovine retinal microartery. J Cardiovasc Pharmacol 1998 Sep; 32(3): 390–6

    Article  PubMed  CAS  Google Scholar 

  106. Schoene RB, Sharpe ED, Harbin TS, et al. Effects of topical betaxolol, timolol, and placebo on pulmonary function in asthmatic bronchitis. Am J Ophthalmol 1984 Jan; 97(1): 86–92

    Article  PubMed  CAS  Google Scholar 

  107. Harris LS, Greenstein SH, Bloom AF. Respiratory difficulties with betaxolol. Am J Ophthalmol 1986 Aug; 102(2): 274–5

    Article  PubMed  CAS  Google Scholar 

  108. Roholt PC. Betaxolol and restrictive airway disease: case report. Arch Ophthalmol 1987 Sep; 105(9): 1172

    Article  PubMed  CAS  Google Scholar 

  109. Nelson WL, Kuritsky JN. Early postmarketing surveillance of betaxolol hydrochloride, Sept 1985–Sept 1986 [letter]. Am J Ophthalmol 1987 Apr; 103(4): 592

    Article  PubMed  CAS  Google Scholar 

  110. Ball S. Congestive heart failure from betaxolol: case report. Arch Ophthalmol 1987 Mar; 105(3): 320

    Article  PubMed  CAS  Google Scholar 

  111. Lynch MG, Whitson JT, Brown RH, et al. Topical beta-blocker therapy and central nervous system side effects: a preliminary study comparing betaxolol and timolol. Arch Ophthalmol 1988 Jul; 106(7): 908–11

    Article  PubMed  CAS  Google Scholar 

  112. Asrani S, Zeimer R, Wilensky J, et al. Large diurnal fluctuations in IOP are an independent risk factor in patients with glaucoma. J Glaucoma 2000 Apr; 9(2): 134–42

    Article  PubMed  CAS  Google Scholar 

  113. Bergea B, Bodin L, Svedbergh B. Impact of intraocular pressure regulation on visual fields in open-angle glaucoma. Ophthalmology 1999 May; 106(5): 997–1004

    Article  PubMed  CAS  Google Scholar 

  114. Mishima HK, Kiuchi Y, Takamatsu M, et al. Circadian intraocular pressure management with latanoprost: diurnal and nocturnal intraocular pressure reduction and increased uveoscleral outflow. Surv Ophthalmol 1997 Feb; 41Suppl. 2: S139–44

    Article  PubMed  Google Scholar 

  115. Hylton C, Robin AL. Update on prostaglandin analogues. Curr Opin Ophthalmol 2003 Apr; 14(2): 65–9

    Article  PubMed  Google Scholar 

  116. Ziai N, Dolan JW, Kacere RD, et al. The effects on aqueous dynamics of PhXA41, a new prostaglandin F2α analogue, after topical application in normal and ocular hypertensive human eyes. Arch Ophthalmol 1993 Oct; 111(1): 1351–8

    Article  PubMed  CAS  Google Scholar 

  117. Parrish RK, Palmberg P, Sheu WP. A comparison of latanoprost, bimatoprost, and travoprost in patients with elevated intraocular pressure: a 12-week, randomized, masked-evaluator multicenter study. Am J Ophthalmol 2003 May; 135(5): 688–703

    Article  PubMed  CAS  Google Scholar 

  118. Camras CB. Comparison of latanoprost and timolol in patients with ocular hypertension and glaucoma: a six-month masked, multicenter trial in the United States. The United States Latanoprost Study Group. Ophthalmology 1996 Jan; 103(1): 138–47

    Article  PubMed  CAS  Google Scholar 

  119. Watson P, Stjernschantz J. A six-month, randomized, double-masked study comparing latanoprost with timolol in open-angle glaucoma and ocular hypertension. The Latanoprost Study Group. Ophthalmology 1996 Jan; 103(1): 126–37

    Article  PubMed  CAS  Google Scholar 

  120. Mishima HK, Masuda K, Kitazawa Y, et al. A comparison of latanoprost and timolol in primary open-angle glaucoma and ocular hypertension: a 12-week study. Arch Ophthalmol 1996 Aug; 114(8): 929–32

    Article  PubMed  CAS  Google Scholar 

  121. Orzatesi N, Rossetti L, Invernizzi T, et al. Effect of timolol, latanoprost, and dorzolamide on circadian IOP in glaucoma or ocular hypertension. Invest Ophthalmol Vis Sci 2000 Aug; 41(9): 2566–73

    Google Scholar 

  122. O’Donoghue EP. A comparison of latanoprost and dorzolamide in patients with glaucoma and ocular hypertension: a 3-month randomized study. Ireland Latanoprost Study Group. Br J Ophthalmol 2000 Jun; 84(6): 579–82

    Article  PubMed  PubMed Central  Google Scholar 

  123. Dubiner HB, Mroz M, Shapiro AM, et al. A comparison of the efficacy and tolerability of brimonidine and latanoprost in adults with open-angle glaucoma or ocular hypertension: a three-month, multicenter, randomized, double-masked, parallel-group trial. Clin Ther 2001 Dec; 23(12): 1969–83

    Article  PubMed  CAS  Google Scholar 

  124. Data on file, Pfizer Ophthalmics Inc., New York, 2003

  125. Morgan PV, Proniuk S, Blanchard J, et al. Effect of temperature and light on the stability of latanoprost and its clinical relevance. J Glaucoma 2001 Oct; 10(5): 401–5

    Article  PubMed  CAS  Google Scholar 

  126. Hellberg MR, Sallee VL, McLaughlin MA, et al. Preclinical efficacy of travoprost, a potent and selective FP prostaglandin receptor agonist. J Ocular Pharmacol Ther 2001 Oct; 17(5): 421–32

    Article  CAS  Google Scholar 

  127. Netland PA, Landry T, Sullivan EK, et al. Travoprost compared with latanoprost and timolol in patients with open-angle glaucoma or ocular hypertension. Am J Ophthalmol 2001 Oct; 132(4): 472–84

    Article  PubMed  CAS  Google Scholar 

  128. Fellman RL, Sullivan EK, Ratliff M, et al. Comparison of travoprost 0.0015% and 0.004% with timolol 0.5% in patients with elevated IOP: a six-month, masked, multicenter trial. Ophthalmology 2002 May; 109(5): 998–1008

    Article  PubMed  Google Scholar 

  129. Goldberg I, Cunha-Vaz J, Jakobsen JE, et al. Comparison of topical travoprost eye drops given once daily and timolol 0.5% given twice daily in patients with open-angle glaucoma or ocular hypertension. J Glaucoma 2002 Oct; 10(5): 414–22

    Article  Google Scholar 

  130. Orengo-Nania S, Landry T, Von Tress M, et al. Evaluation of travoprost as adjunctive therapy in patients with uncontrolled intraocular pressure while using timolol 0.5%. Am J Ophthalmol 2001 Dec; 132(6): 860–8

    Article  PubMed  CAS  Google Scholar 

  131. Dubiner HB, Sircy MD, Landry T, et al. Comparison of the diurnal ocular hypotensive efficacy of travoprost and latanoprost over a 44-hour period in patients with elevated intraocular pressure. Clin Ther 2004 Jan; 26(1): 84–91

    Article  PubMed  CAS  Google Scholar 

  132. Whitson JT. Travoprost-a new prostaglandin analogue for the treatment of glaucoma. Expert Opin Pharmacother 2002 Jul; 3(7): 965–77

    Article  PubMed  CAS  Google Scholar 

  133. Woodward DF, Krauss AH, Chen J, et al. Pharmacological characterization of a novel antiglaucoma agent, Bimatoprost (AGN 192024). J Pharmacol Exp Ther 2003 May; 305(2): 772–85

    Article  PubMed  CAS  Google Scholar 

  134. Hellberg MR, Ke TL, Haggard K, et al. The hydrolysis of the prostaglandin analogue prodrug bimatoprost to 17-phenyl-trinor PGF2alpha by human and rabbit ocular tissue. J Ocul Pharmacol Ther 2003 Apr; 19(2): 97–103

    Article  PubMed  CAS  Google Scholar 

  135. Brubaker RF. Mechanism of action of bimatoprost (Lumigan). Surv Ophthalmol 2001 May; 45(4): S347–51

    Article  PubMed  Google Scholar 

  136. Sherwood M, Brandt J. Six-month comparison of bimatoprost q.d. and b.i.d. with timolol b.i.d. in patients with elevated intraocular pressure. Surv Ophthalmol 2001 May; 45(4): S361–8

    Article  PubMed  Google Scholar 

  137. Gandolfi S, Simmons ST, Sturm R, et al. Three-month comparison of bimatoprost and latanoprost in patients with glaucoma and ocular hypertension. Adv Ther 2001 May–Jun; 18(3): 110–21

    Article  PubMed  CAS  Google Scholar 

  138. Noecker RS, Dirks MS, Choplin NT, et al. A six-month randomized clinical trial comparing the intraocular pressure-lowering efficacy of bimatoprost and latanoprost in patients with ocular hypertension or glaucoma. Am J Ophthalmol 2003 Jan; 135(1): 55–63

    Article  PubMed  CAS  Google Scholar 

  139. Coleman AL, Lerner F, Bernstein P, et al. A 3-month randomized controlled trial of bimatoprost (LUMIGAN) versus combined timolol and dorzolamide (Cosopt) in patients with glaucoma or ocular hypertension. Ophthalmology 2003 Dec; 110(12): 2362–8

    Article  PubMed  Google Scholar 

  140. Strohmaier K, Snyder E, DuBiner H, et al. The efficacy and safety of the dorzolamide-timolol combination versus the concomitant administration of its components. Ophthalmology 1998 Oct; 105(10): 1936–44

    Article  PubMed  CAS  Google Scholar 

  141. Cantor LB. An update on bimatoprost in glaucoma therapy. Expert Opin Pharmacother 2002 Dec; 3(12): 1753–62

    Article  PubMed  CAS  Google Scholar 

  142. Nordmann JP, Mertz B, Yannoulis NC, et al. A double-masked randomized comparison of the efficacy and safety of unoprostone with timolol and betaxolol in patients with primary open-angle glaucoma including Pseudoexfoliation glaucoma or ocular hypertension: 6-month data. Am J Ophthalmol 2002 Jan; 133(1): 1–10

    Article  PubMed  CAS  Google Scholar 

  143. Jampel HD, Bacharach J, Sheu WP, et al. Randomized clinical trial of latanoprost and unoprostone in patients with elevated intraocular pressure. Am J Ophthalmol 2002 Dec; 134(6): 863–71

    Article  PubMed  CAS  Google Scholar 

  144. Hommer A, Kapik B, Shams N. Unoprostone as adjunctive therapy to timolol: a double masked randomized study versus brimonidine and dorzolamide. Br J Ophthalmol 2003 May; 87(5): 592–8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Hedner J, Svedmyr N, Lunde H, et al. The lack of respiratory effects of the ocular hypotensive drug latanoprost in patients with moderate-steroid treated asthma. Surv Ophthalmol 1997 Feb; 41Suppl. 2: S111–5

    Article  PubMed  Google Scholar 

  146. Wistrand PJ, Stjernschantz J, Olsson K. The incidence and time-course of latanoprost-induced iridial pigmentation as a function of eye color. Surv Ophthalmol 1997 Feb; 41Suppl. 2: S129–38

    Article  PubMed  Google Scholar 

  147. Fechtner RD, Khouri AS, Zimmerman TJ, et al. Anterior uveitis associated with latanoprost. Am J Ophthalmol 1998 Jul; 126(1): 37–41

    Article  PubMed  CAS  Google Scholar 

  148. Dios Castro E, Maquet Dusart JA. Latanoprost-associated recurrent herpes simplex keratitis. Arch Soc Esp Oftalmol 2000 Nov; 75(11): 775–8

    PubMed  CAS  Google Scholar 

  149. Ayyala RS, Cruz DA, Margo CE, et al. Cystoid macular edema associated with latanoprost in aphakic and Pseudophakic eyes. Am J Ophthalmol 1998 Oct; 126(4): 602–4

    Article  PubMed  CAS  Google Scholar 

  150. Callanan D, Fellman RL, Savage JA. Latanoprost-associated cystoid macular edema. Am J Ophthalmol 1998 Jul; 126(1): 134–5

    Article  PubMed  CAS  Google Scholar 

  151. Bucci MG. Intraocular pressure-lowering effects of latanoprost monotherapy versus latanoprost or pilocarpine in combination with timolol: a randomized, observer-masked multicenter study in patients with open-angle glaucoma. Italian Latanoprost Study Group. J Glaucoma 1999 Feb; 8(1): 24–30

    Article  PubMed  CAS  Google Scholar 

  152. Higginbotham EJ, Feldman R, Stiles M, et al. Latanoprost and timolol combination therapy vs monotherapy. Arch Ophthalmol 2002 Jul; 120(7): 915–22

    Article  PubMed  CAS  Google Scholar 

  153. Netland PA, Michael M, Rosner SA, et al. Brimonidine purite and bimatoprost compared with timolol and latanoprost in patients with glaucoma and ocular hypertension. Adv Ther 2003 Jan–Feb; 20(1): 20–30

    Article  PubMed  CAS  Google Scholar 

  154. Chiselita D, Apatachioae I, Poiata I. The ocular hypotensive effect of the combination of latanoprost and dorzolamide. Oftalmologia 1999 Jan; 46(1): 39–45

    PubMed  CAS  Google Scholar 

  155. O’Connor DJ, Martone JF, Mead A. Additive intraocular pressure lowering effect of various medications with latanoprost. Am J Ophthalmol 2002 Jun; 133(6): 836–7

    Article  PubMed  Google Scholar 

  156. Sall KN, Greff LJ, Johnson-Pratt LR, et al. Dorzolamide/timololcombination versus concomitant administration of brimonidine and timolol: six-month comparison of efficacy and tolerability. Ophthalmology 2003 Mar; 110(3): 615–24

    Article  PubMed  Google Scholar 

  157. Orzatesi N, Rossetti L, Bottali A, et al. The effect of latanoprost, brimonidine and a fixed combination of timolol and dorzolamide on circadian intraocular pressure in patients with glaucoma or ocular hypertension. Arch Ophthalmol 2003 Apr; 121(4): 453–7

    Article  Google Scholar 

  158. Airaksinen PJ, Valkonen R, Stenborg T, et al. A double-masked study of timolol and pilocarpine combined. Am J Ophthalmol 1987 Dec; 104(6): 587–90

    Article  PubMed  CAS  Google Scholar 

  159. Scharrer A, Ober M. Metipranolol 0.1% and pilocarpine 2% as a fixed combination compared to each substance alone in the treatment of glaucoma: a controlled, randomized clinical study comparing the intraindividual effects and tolerance. Klin Monatsbl Augenheilkd 1986 Dec; 189(6): 450–5

    Article  PubMed  CAS  Google Scholar 

  160. Wise JB, Witter SL. Argon laser therapy for open-angle glaucoma: a pilot study. Arch Ophthalmol 1979 Feb; 97(2): 319–22

    Article  PubMed  CAS  Google Scholar 

  161. Babizhayev MA, Brodskaya MW, Mamedov NG, et al. Clinical, structural and molecular phototherapy effects of laser irradiation on the trabecular meshwork of human glaucomatous eyes. Graefes Arch Clin Exp Ophthalmol 1990 Jan; 228(1): 90–100

    Article  PubMed  CAS  Google Scholar 

  162. Wise JB. Long-term control of adult open angle glaucoma by argon laser treatment. Ophthalmology 1981 Mar; 88(3): 197–202

    Article  PubMed  CAS  Google Scholar 

  163. Wilensky JT, Jampol LM. Laser therapy for open angle glaucoma. Ophthalmology 1981 Mar; 88(3): 213–7

    Article  PubMed  CAS  Google Scholar 

  164. Tuulonen A, Niva AK, Alanko HI. A controlled five-year follow-up study of laser trabeculoplasty as primary therapy for open-angle glaucoma. Am J Ophthalmol 1987 Oct; 104(4): 334–8

    Article  PubMed  CAS  Google Scholar 

  165. Frucht J, Bishara S, Ticho U. Early intraocular pressure response following laser trabeculoplasty. Br J Ophthalmol 1985 Oct; 69(10): 771–3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Thomas JV, Simmons RJ, Belcher III CD. Argon laser trabeculoplasty in the presurgical glaucoma patient. Ophthalmology 1982 Mar; 89(3): 187–97

    Article  PubMed  CAS  Google Scholar 

  167. Hoskins Jr HD, Hetherington Jr J, Minckler DS, et al. Complications of laser trabeculoplasty. Ophthalmology 1983 Jul; 90(7): 796–9

    Article  PubMed  Google Scholar 

  168. Latina MA, Sibayan SA, Shin DH, et al. Q-switched 532-nm Nd:YAG laser trabeculoplasty (selective laser trabeculoplasty): a multicenter, pilot, clinical study. Ophthalmology 1998 Nov; 105(11): 2082–8

    Article  PubMed  CAS  Google Scholar 

  169. Kramer TR, Noecker RJ. Comparison of the morphologic changes after selective laser trabeculoplasty and argon laser trabeculoplasty in human eye bank eyes. Ophthalmology 2001 Apr; 108(4): 773–9

    Article  PubMed  CAS  Google Scholar 

  170. Damji KF, Shah KC, Rock WJ, et al. Selective laser trabeculoplasty vs argon laser trabeculoplasty: a prospective randomized clinical trial. Br J Ophthalmol 1999 Jun; 83(6): 718–22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Cairns JE. Trabeculectomy: preliminary report of a new method. Am J Ophthalmol 1968 Oct; 66(4): 673–9

    Article  PubMed  CAS  Google Scholar 

  172. Ruderman JM, Welch DB, Smith MF, et al. A randomized study of 5-fluorouracil and filtration surgery. Am J Ophthalmol 1987 Sep; 104(3): 218–24

    Article  PubMed  CAS  Google Scholar 

  173. Palmer SS. Mitomycin as an adjunct chemotherapy with trabeculectomy. Ophthalmology 1991 Mar; 98(3): 317–21

    Article  PubMed  CAS  Google Scholar 

  174. Zimmerman TJ, Kooner KS, Ford VJ, et al. Effectiveness of nonpenetrating trabeculectomy in aphakic patients with glaucoma. Ophthalmic Surg 1984 Jan; 15(1): 44–50

    PubMed  CAS  Google Scholar 

  175. Chiselita D. Non-penetrating deep sclerectomy versus trabeculectomy in primary open angle glaucoma surgery. Eye 2001 Apr; 15 (Pt 2): 197–201

    Article  PubMed  CAS  Google Scholar 

  176. Whitson JT. Recent developments in glaucoma drainage implant surgery. Int Ophthalmol Clin 1999 Summer; 39(3): 43–55

    Article  PubMed  CAS  Google Scholar 

  177. deRoetth Jr A. Cryosurgery for the treatment of advanced chronic simple glaucoma. Am J Ophthalmol 1966 Mar; 61(3): 443–50

    Article  Google Scholar 

  178. Albaugh CH, Dunphy EB. Cyclodiathermy. Arch Ophthalmol 1942 Mar; 27(3): 543–57

    Article  Google Scholar 

  179. Peyman GA, Naguib KS, Gaasterland D. Transscleral application of a semiconductor diode laser. Lasers Surg Med 1990; 10(6): 569–75

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported in part by an unrestricted research grant from Research to Prevent Blindness, Inc., New York, NY, USA.

The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jess T. Whitson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marquis, R.E., Whitson, J.T. Management of Glaucoma: Focus on Pharmacological Therapy. Drugs Aging 22, 1–21 (2005). https://doi.org/10.2165/00002512-200522010-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-200522010-00001

Keywords

Navigation