Skip to main content
Log in

Clinical Pharmacokinetics of Low-Dose Pulse Methotrexate in Rheumatoid Arthritis

  • Review Article
  • Special Populations
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Low-dose pulse methotrexate has emerged as one of the most frequently used slow-acting, symptom-modifying antirheumatic drugs in patients with rheumatoid arthritis (RA) because of its favourable risk-benefit profile.

Methotrexate is a weak bicarboxylic acid structurally related to folic acid. The most widely used methods for the analysis of methotrexate are immunoassays, particularly fluorescence polarisation immunoassay. After oral administration, the drug is rapidly but incompletely absorbed. Since food does not significantly affect the bioavailability of oral methotrexate in adult patients, the drug may be taken regardless of meals. There is a marked interindividual variability in the extent of absorption of oral methotrexate. Conversely, the intraindividual variability is moderate even over a long time period. Intramuscular and subcutaneous injections of methotrexate result in comparable pharmacokinetics, suggesting that these routes of administration are interchangeable.

A mean protein binding to serum albumin of 42 to 57% is usually reported. Again, the unbound fraction exhibits a large interindividual variability. The steady-state volume of distribution is approximately 1 L/kg. Methotrexate distributes to extravascular compartments, including synovial fluid, and to different tissues, especially kidney, liver and joint tissues. Finally, the drug is transported into cells, mainly by a carrier-mediated active transport process.

Methotrexate is partly oxidised by hepatic aldehyde oxidase to 7-hydroxy-methotrexate. This main, circulating metabolite is over 90% bound to serum albumin. Both methotrexate and 7-hydroxy-methotrexate may be converted to polyglutamyl derivatives which are selectively retained in cells. Methotrexate is mainly excreted by the kidney as intact drug regardless of the route of administration. The drug is filtered by the glomeruli, and then undergoes both secretion and reabsorption processes within the tubule. These processes are differentially saturable, resulting in possible nonlinear elimination pharmacokinetics. The usually reported mean values for the elimination half-life and the total body clearance of methotrexate are 5 to 8 hours and 4.8 to 7.8 L/h, respectively. A positive correlation between methotrexate clearance and creatinine clearance has been found by some authors.

Finally, the pharmacokinetics of low-dose methotrexate appears to be highly variable and largely unpredictable even in patients with normal renal and hepatic function. Furthermore, studies in patients with juvenile rheumatoid arthritis provide evidence of age-dependent pharmacokinetics of the drug. These features must be considered when judging the individual clinical response to methotrexate therapy.

Various drugs currently used in RA may interact with methotrexate. Aspirin might affect methotrexate disposition to a greater extent than other nonsteroidal anti-inflammatory drugs without causing greater toxicity. Corticosteroids do not interfere with the pharmacokinetics of methotrexate, whereas chloroquine may reduce the gastrointestinal absorption of the drug. Folates, especially folic acid, have been shown to reduce the adverse effects of methotrexate without compromising its efficacy in RA. Finally, both trimethoprim-sulfamethoxazole (cotrimoxazole) and probenecid lead to increased toxicity of methotrexate, and hence should be avoided in patients receiving these drugs.

A relationship between oral dosage and efficacy has been found in the range 5 to 20mg methotrexate weekly. The plateau of efficacy is attained at approximately 10 mg/m2/week in most patients. No clear relationship between pharmacokinetic parameters and clinical response has been demonstrated. Overall, the dosage must be individualised because of interindividual variability in the dose-response curve. This variability is probably related, at least in part, to the wide interindividual variability in the disposition of the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brooks PM. Clinical management of rheumatoid arthritis. Lancet 1993; 341: 286–90

    PubMed  CAS  Google Scholar 

  2. Weyand CM, Hicok KC, Conn DL, et al. The influence of HLA-DRB1 genes on disease severity in rheumatoid arthritis. Ann Intern Med 1992; 117: 801–6

    PubMed  CAS  Google Scholar 

  3. Sewell KL, Trentham DE. Pathogenesis of rheumatoid arthritis. Lancet 1993; 341: 283–6

    PubMed  CAS  Google Scholar 

  4. Akil M, Amos RS. Rheumatoid arthritis. I: Clinical features and diagnosis. BMJ 1995; 310: 587–90

    PubMed  CAS  Google Scholar 

  5. Edmonds JP, Scott DL, Furst DE, et al. New classification of antirheumatic drugs. The evolution of a concept. J Rheumatol 1993; 20: 585–7

    PubMed  CAS  Google Scholar 

  6. Bannwarth B, Labat L, Moride Y, et al. Methotrexate in rheumatoid arthritis. An update. Drugs 1994; 47: 25–50

    PubMed  CAS  Google Scholar 

  7. Cash JM, Klippel JH. Second line drug therapy for rheumatoid arthritis. N Engl J Med 1994; 330: 1368–75

    PubMed  CAS  Google Scholar 

  8. Capell HA, Brzeski M. Slow drugs: slow progress? Use of slow acting antirheumatic drugs (SAARDs) in rheumatoid arthritis. Ann Rheum Dis 1992; 51: 424–9

    PubMed  CAS  Google Scholar 

  9. Songsiridej N, Furst DE. Methotrexate — the rapidly acting drug. Baillière’s Clin Rheumatol 1990; 4: 575–93

    CAS  Google Scholar 

  10. Wolfe F, Cathey MA. Analysis of methotrexate treatment effect in a longitudinal observational study: utility of cluster analysis. J Rheumatol 1991; 18: 672–7

    PubMed  CAS  Google Scholar 

  11. Kremer JM, Rynes RI, Bartholomew LE. Severe flare of rheumatoid arthritis after discontinuation of long-term methotrexate therapy. Double blind study. Am J Med 1987; 82: 781–6

    PubMed  CAS  Google Scholar 

  12. Ward JR. Earlier intervention with second line therapies. J Rheumatol 1990; 17Suppl. 25; 18–23

    Google Scholar 

  13. Hess EV, Luggen ME. Remodeling the pyramid — a concept whose time has not yet come. J Rheumatol 1989; 16: 1175–6

    PubMed  CAS  Google Scholar 

  14. Wilske KR, Healey LA. Remodeling the pyramid — a concept whose time has come. J Rheumatol 1989; 16: 565–7

    PubMed  CAS  Google Scholar 

  15. Fries JF. Reevaluationg the therapeutic approach to rheumatoid arthritis: the ‘sawtooth’ strategy. J Rheumatol 1990; 17Suppl. 22: 12–5

    Google Scholar 

  16. Crom WR, Evans WE. Methotrexate. In: Evans WE, Schentag JJ, Jusko WJ, editors. Applied pharmacokinetics: principle of drug monitoring. Chap. 29. Vancouver: Applied Pharmacokinetics, 1992; 1–42

    Google Scholar 

  17. Bleyer WA. The clinical pharmacology of methotrexate. New applications of an old drug. Cancer 1978; 41: 36–51

    PubMed  CAS  Google Scholar 

  18. Sinnett MJ, Groff GD, Raddatz DA, et al. Methotrexate pharmacokinetics in patients with rheumatoid arthritis. J Rheumatol 1989; 16: 745–8

    PubMed  CAS  Google Scholar 

  19. Cosolo W, Drummer OH, Christophidis N. Comparison of high performance liquid chromatography and the Abbott fluorescent polarization radioimmunoassay in the measurement of methotrexate. J Chromatogr 1989; 494: 201–8

    PubMed  CAS  Google Scholar 

  20. Beck O, Seideman P, Wennberg M, et al. Trace analysis of methotrexate and 7-hydroxymethotrexate in human plasma and urine by a novel high-performance liquid chromatographic method. Ther Drug Monit 1991; 13: 528–32

    PubMed  CAS  Google Scholar 

  21. Salamoun J, Frantisek J. Determination of methotrexate and its metabolites, 7-hydroxymethotrexate and 2,4-diamino-N10-methylpteroic acid in biological fluids by liquid chromatography with fluorimetric detection. J Chromatogr 1986; 378: 173–81

    PubMed  CAS  Google Scholar 

  22. Nuernberg B, Kohlbrenner M, Faulkner R, et al. Rapid quantitation of methotrexate and its metabolites in human serum, urine and bile, using solid-phase extraction and high-performance liquid chromatography. J Chromatogr 1989; 487: 476–82

    PubMed  CAS  Google Scholar 

  23. Palmisano F, Cataldi TRI, Zambonin PG. Determination of the antineoplastic agent methotrexate in body fluids by high-performance liquid chromatography with electrochemical detection. J Chromatogr 1985; 344: 249–58

    PubMed  CAS  Google Scholar 

  24. Van Tellingen O, Van Der Woude HR, Beijnen JH, et al. Stable and sensitive method for the simultaneous determination of N5-methyltetrahydrofolate, leucovorin, methotrexate and 7-hydroxymethotrexate in biological fluids. J Chromatogr 1989; 488: 379–88

    PubMed  Google Scholar 

  25. Kozloski GD, De Vito JM, Kisicki JC, et al. The effect of food on the absorption of methotrexate sodium tablets in healthy volunteers. Arthritis Rheum 1992; 35: 761–4

    PubMed  CAS  Google Scholar 

  26. Oguey D, Kölliker F, Gerber NJ, et al. Effect of food on the bioavailability of low-dose methotrexate in patients with rheumatoid arthritis. Arthritis Rheum 1992; 35: 611–4

    PubMed  CAS  Google Scholar 

  27. Lebbe C, Beyeler C, Gerber NJ, et al. Intraindividual variability of the bioavailability of low dose methotrexate after oral administration in rheumatoid arthritis. Ann Rheum Dis 1994; 53: 475–7

    PubMed  CAS  Google Scholar 

  28. Skeith KJ, Russell AS, Jamali F, et al. Lack of significant interaction between low dose methotrexate and ibuprofen or flurbiprofen in patients with arthritis. J Rheumatol 1990; 17: 1008–10

    PubMed  CAS  Google Scholar 

  29. Herman RA, Veng-Pedersen P, Hoffman J, et al. Pharmacokinetics of low dose methotrexate in rheumatoid arthritis patients. J Pharm Sci 1989; 78: 165–71

    PubMed  CAS  Google Scholar 

  30. Seideman P, Beck O, Eksborg S, et al. The pharmacokinetics of methotrexate and its 7-hydroxy metabolite in patients with rheumatoid arthritis. Br J Clin Pharmacol 1993; 35: 409–12

    PubMed  CAS  Google Scholar 

  31. Zimmerman J. Methotrexate transport in the human intestine. Evidence for heterogeneity. Biochem Pharmacol 1992; 43: 2377–83

    PubMed  CAS  Google Scholar 

  32. Ahern M, Booth J, Loxton A, et al. Methotrexate kinetics in rheumatoid arthritis: is there an interaction with nonsteroidal antiinflammatory drugs? J Rheumatol 1988; 15: 1356–60

    PubMed  CAS  Google Scholar 

  33. Kremer JM, Petrillo GF, Hamilton RA. Examination of pharmacokinetic variables in a cohort of patients with rheumatoid arthritis beginning therapy with methotrexate compared with a cohort receiving the drug for a mean of 81 months. J Rheumatol 1995; 22: 41–4

    PubMed  CAS  Google Scholar 

  34. Shen DD, Azarnoff DL. Clinical pharmacokinetics of methotrexate. Clin Pharmacokinet 1978; 3: 1–13

    PubMed  CAS  Google Scholar 

  35. Hamilton RA, Kremer JM. The effects of food on methotrexate absorption. J Rheumatol 1995; 22: 630–2

    PubMed  CAS  Google Scholar 

  36. Dupuis LL, Koren G, Silverman ED, et al. Influence of food on the bioavailability of oral methotrexate in children. J Rheumatol 1995; 22: 1570–3

    PubMed  CAS  Google Scholar 

  37. Jundt JW, Browne BA, Fiocco GP, et al. A comparison of low dose methotrexate bioavailability: oral solution, oral tablet, subcutaneous and intramuscular dosing. J Rheumatol 1993; 20: 1845–9

    PubMed  CAS  Google Scholar 

  38. Anaya JM, Fabre D, Bressolle F, et al. Effect of etodolac on methotrexate pharmacokinetics in patients with rheumatoid arthritis. J Rheumatol 1994; 21: 203–8

    PubMed  CAS  Google Scholar 

  39. Combe B, Edno L, Lafforgue P, et al. Total and free methotrexate pharmacokinetics with and without piroxicam in rheumatoid arthritis patients. Br J Rheumatol 1995; 34: 421–8

    PubMed  CAS  Google Scholar 

  40. Lafforgue P, Monjanel-Mouterde S, Durand A, et al. Is there an interaction between low doses of corticosteroids and methotrexate in patients with rheumatoid arthritis ? A pharmacokinetic study in 33 patients. J Rheumatol 1993; 20: 263–7

    PubMed  CAS  Google Scholar 

  41. Edelman J, Biggs DF, Jamali F, et al. Low-dose methotrexate kinetics in arthritis. Clin Pharmacol Ther 1984; 35: 382–6

    PubMed  CAS  Google Scholar 

  42. Brooks PJ, Spruill WJ, Parish RC, et al. Pharmacokinetics of methotrexate administered by intramuscular and subcutaneous injections in patients with rheumatoid arthritis. Arthritis Rheum 1990; 33: 91–4

    PubMed  CAS  Google Scholar 

  43. Auvinet B, Jarrier I, Le Levier F, et al. Biodisponibilité comparée du méthotrexate par voies orale et intramusculaire dans la polyarthrite rhumatoïde. Presse Med 1992; 21: 822

    PubMed  CAS  Google Scholar 

  44. Balis FM, Mirro J, Reaman GH, et al. Pharmacokinetics of subcutaneous methotrexate. J Clin Oncol 1988; 6: 1882–8

    PubMed  CAS  Google Scholar 

  45. Stewart CF, Fleming RA, Arkin CR, et al. Coadministration of naproxen and low-dose methotrexate in patients with rheumatoid arthritis. Clin Pharmacol Ther 1990; 47: 540–6

    PubMed  CAS  Google Scholar 

  46. Tracy TS, Krohn K, Jones DR, et al. The effects of a salicylate, ibuprofen, and naproxen on the disposition of methotrexate in patients with rheumatoid arthritis. Eur J Clin Pharmacol 1992; 42: 121–5

    PubMed  CAS  Google Scholar 

  47. Tracy TS, Worster T, Bradley JD, et al. Methotrexate disposition following concomitant administration of ketoprofen, piroxicam and flurbiprofen in patients with rheumatoid arthritis. Br J Clin Pharmacol 1994; 37: 453–6

    PubMed  CAS  Google Scholar 

  48. Claudepierre P, Urien S, Chevalier X, et al. Methotrexate serum binding in rheumatoid arthritis. Int J Clin Pharmacol Ther 1994; 32: 113–5

    PubMed  CAS  Google Scholar 

  49. Furst DE, Herman RA, Koehnke R, et al. Effect of aspirin and sulindac on methotrexate clearance. J Pharm Sci 1990; 79: 782–6

    PubMed  CAS  Google Scholar 

  50. Rochas MA, Tufenkji AE, Levillain P, et al. Protein binding of methotrexate to human albumin and serum. A first derivative spectroscopic analysis. Arzneim Forsch 1991; 41: 1286–8

    CAS  Google Scholar 

  51. Bischoff KB, Dedrick RL, Zaharko DS, et al. Methotrexate pharmacokinetics. J Pharm Sci 1971; 60: 1128–32

    PubMed  CAS  Google Scholar 

  52. Bologna C, Edno L, Anaya JM, et al. Methotrexate concentrations in synovial membrane and trabecular and cortical bone in rheumatoid arthritis patients. Arthritis Rheum 1994; 37: 1770–3

    PubMed  CAS  Google Scholar 

  53. Stewart CF, Christensen ML, Evens RP, et al. Influence of concomitant aspirin or prednisone on methotrexate synovial fluid concentrations. J Pharm Exp Ther 1987; 243: 131–7

    CAS  Google Scholar 

  54. Tishler M, Caspi D, Graff E, et al. Synovial and serum levels of methotrexate during methotrexate therapy of rheumatoid arthritis. Br J Rheumatol 1989; 28: 422–3

    PubMed  CAS  Google Scholar 

  55. Wigginton SM, Chu BCF, Weisman MH, et al. Methotrexate pharmacokinetics after intraarticular injection in patients with rheumatoid arthritis. Arthritis Rheum 1980; 23: 119–22

    PubMed  CAS  Google Scholar 

  56. Leeb B, Dunky A, Ogris E, et al. Hämatozelluläres Methotrexate bei Langzeittherapie entzündlich rheumatischer Erkrankungen. Acta Med Austriaca 1988; 15: 140–4

    PubMed  CAS  Google Scholar 

  57. Kamen BA, Capdevila A. Receptor-mediated folate accumulation is regulated by the cellular folate content. Proc Natl Acad Sci USA 1986; 83: 5983–7

    PubMed  CAS  Google Scholar 

  58. Slørdal L, Sager G, Aarbakke J. Pharmacokinetic interactions with methotrexate: is 7-hydroxy-methotrexate the culprit? Lancet 1988; i: 591–2

    Google Scholar 

  59. Kremer JM, Galivan J, Streckfuss A, et al. Methotrexate metabolism analysis in blood and liver of rheumatoid arthritis patients. Association with hepatic folate deficiency and formation of polyglutamates. Arthritis Rheum 1986; 29: 832–5

    PubMed  CAS  Google Scholar 

  60. Hendel J, Brodthagen H. Entero-hepatic cycling of methotrexate estimated by use of the D-isomer as a reference marker. Eur J Clin Pharmacol 1984; 26: 103–7

    PubMed  CAS  Google Scholar 

  61. Nuernberg B, Koehnke R, Solsky M, et al. Biliary elimination of low-dose methotrexate in humans. Arthritis Rheum 1990; 33: 898–902

    PubMed  CAS  Google Scholar 

  62. Seideman P, Albertioni F, Beck O, et al. Chloroquine reduces the bioavailability of methotrexate in patients with rheumatoid arthritis. A possible mechanism of reduced hepatotoxicity. Arthritis Rheum 1994; 37: 830–3

    PubMed  CAS  Google Scholar 

  63. Hendel J, Nyfors A. Nonlinear renal elimination kinetics of methotrexate due to saturation of renal tubular reabsorption. Eur J Clin Pharmacol 1984; 26: 121–4

    PubMed  CAS  Google Scholar 

  64. Stewart CF, Fleming RA, Germain BF, et al. Aspirin alters methotrexate disposition in rheumatoid arthritis patients. Arthritis Rheum 1991; 34: 1514–20

    PubMed  CAS  Google Scholar 

  65. Sabot C, Debord J, Roullet B, et al. Comparison of 2- and 3-compartment models for the Bayesian estimation of methotrexate pharmacokinetics. Int J Clin Pharmacol Ther 1995; 32: 164–9

    Google Scholar 

  66. Körber H, Iven H, Gross WL. Bioavailability and pharmacokinetics of methotrexate and its metabolite 7-hydroxy-methotrexate after low dose MTX (25 mg) in patients with chronic rheumatic diseases [abstract]. Arthritis Rheum 1992; 35 Suppl.: S142

    Google Scholar 

  67. Janknegt R, Nube MJ, Van Den Hoogenband HM, et al. Pharmacokinetics of methotrexate in continuous ambulatory peritoneal dialysis. Pharm Weekbl Sci 1988; 10: 86–9

    PubMed  CAS  Google Scholar 

  68. Kremer JM, Petrillo GF, Hamilton RA. Pharmacokinetics and renal function in patients with rheumatoid arthritis receiving a standard dose of oral weekly methotrexate: association with significant decreases in creatinine clearance and renal clearance of the drug after 6 months of therapy. J Rheumatol 1995; 22: 38–40

    PubMed  CAS  Google Scholar 

  69. Marcé S, Bannwarth B, Schaeverbeke T, et al. Is low dose methotrexate nephrotoxic? J Rheumatol 1993; 20: 1906–7

    Google Scholar 

  70. Seideman P, Müller-Suur R. Renal effects of aspirin and low dose methotrexate in rheumatoid arthritis. Ann Rheum Dis 1993; 52: 613–5

    PubMed  CAS  Google Scholar 

  71. Bologna C, Anaya JM, Bressolle F, et al. Correlation between methotrexate pharmacokinetic parameters, and clinical and biological status in rheumatoid arthritis patients. Clin Exp Rheumatol 1995; 13: 465–70

    PubMed  CAS  Google Scholar 

  72. Albertioni F, Flatø B, Seideman P, et al. Methotrexate in juvenile rheumatoid arthritis. Evidence of age dependent pharmacokinetics. Eur J Clin Pharmacol 1995; 47: 507–11

    PubMed  CAS  Google Scholar 

  73. Ravelli A, Di Fuccia G, Molinaro M, et al. Plasma levels after oral methotrexate in children with juvenile rheumatoid arthritis. J Rheumatol 1993; 20: 1573–7

    PubMed  CAS  Google Scholar 

  74. Eksborg S, Albertioni F, Beck O, et al. Methotrexate in rheumatoid arthritis — a limited sampling strategy for estimation of the area under the plasma concentration versus time curve. Ther Drug Monit 1994; 16: 560–3

    PubMed  CAS  Google Scholar 

  75. Stewart CF, Evans WE. Drug-drug interactions with antirheumatic agents: review of selected clinically important interactions. J Rheumatol 1990; 17Suppl. 22: 16–23

    Google Scholar 

  76. Frenia ML, Long KS. Methotrexate and nonsteroidal anti-inflammatory drug interactions. Ann Pharmacother 1992; 26: 234–7

    PubMed  CAS  Google Scholar 

  77. Slørdal L, Sager G, Jaeger R, et al. Interactions with the protein binding of 7-hydroxy-methotrexate in human serum in vitro. Biochem Pharmacol 1988; 37: 607–11

    PubMed  Google Scholar 

  78. Kremer JM, Hamilton RA. The effects of nonsteroidal anti-inflammatory drugs on methotrexate pharmacokinetics: impairment of renal clearance of methotrexate at weekly maintenance doses but not at 7.5 mg. J Rheumatol 1995; 22: 2072–7

    PubMed  CAS  Google Scholar 

  79. Rooney TW, Furst DE, Koehnke R, et al. Aspirin is not associated with more toxicity than other nonsteroidal antiinflammatory drugs in patients with rheumatoid arthritis treated with methotrexate. J Rheumatol 1993; 20: 1297–302

    PubMed  CAS  Google Scholar 

  80. Pincus T, Marcum SB, Callahan LF. Longterm drug therapy for rheumatoid arthritis in seven rheumatology private practices: II. Second line drugs and prednisone. J Rheumatol 1992; 19: 1885–94

    PubMed  CAS  Google Scholar 

  81. Wallace CA, Smith AL, Sherry DD. Pilot investigation of naproxen/methotrexate interaction in patients with juvenile rheumatoid arthritis. J Rheumatol 1993; 20: 1764–8

    PubMed  CAS  Google Scholar 

  82. Dupuis LL, Koren G, Shore A, et al. Methotrexate-nonsteroidal antiinflammatory drug interaction in children with arthritis. J Rheumatol 1990; 17: 1469–73

    PubMed  CAS  Google Scholar 

  83. Lafforgue P, Monjanel-Monterde S, Durand A, et al. Do steroids influence low dose methotrexate pharmacokinetics. Reply. J Rheumatol 1994; 21: 1171–2

    Google Scholar 

  84. Koerber H, Gross WL, Iven H. Do steroids influence low dose methotrexate pharmacokinetics? J Rheumatol 1994; 21: 1170–1

    PubMed  CAS  Google Scholar 

  85. Wallace CA, Bleyer WA, Sherry DD, et al. Toxicity and serum levels of methotrexate in children with juvenile rheumatoid arthritis. Arthritis Rheum 1989; 32: 677–81

    PubMed  CAS  Google Scholar 

  86. Fries JF, Singh G, Lenert L, Furst DE. Aspirin, hydroxychloroquine, and hepatic enzyme abnormalities with methotrexate in rheumatoid arthritis. Arthritis Rheum 1990; 33: 1611–9

    PubMed  CAS  Google Scholar 

  87. Rau R, Wassenberg S, Herborn G. Can methotrexate reduce the renal toxicity of parenteral gold? J Rheumatol 1993; 20: 759–61

    PubMed  CAS  Google Scholar 

  88. Leeb BF. Should folate supplementation be routinely recommended for older patients receiving methotrexate? Drugs Aging 1994; 5: 319–22

    PubMed  CAS  Google Scholar 

  89. Weinblatt ME, Marir AL, Coblyn JS. Low dose leucovorin does not interfere with the efficacy of methotrexate in rheumatoid arthritis: an 8 week randomized placebo controlled trial. J Rheumatol 1993; 20: 950–2

    PubMed  CAS  Google Scholar 

  90. Morgan SL, Baggott JE, Vaughn WH, et al. Supplementation with folic acid during methotrexate therapy for rheumatoid arthritis. A double-blind, placebo-controlled trial. Ann Intern Med 1994; 121: 833–41

    PubMed  CAS  Google Scholar 

  91. Hunt RE, Phillips RM, Shergy WJ. Role of folic acid in limiting methotrexate related side effects [abstract]. Arthritis Rheum 1994; 37 Suppl.: S253

    Google Scholar 

  92. He YL, Tanigawara Y, Yasuhara M, et al. Effect of folinic acid on tissue residence and excretion of methotrexate in rats. Drug Metab Dispos 1991; 729–34

    Google Scholar 

  93. Bannwarth B, Vernhes JP, Schaeverbeke T, et al. The facts about methotrexate in rheumatoid arthritis. Rev Rhum [Engl Ed] 1995; 62: 499–501

    Google Scholar 

  94. Larsen FG, Nielsen-Kudsk F, Jakobsen P, et al. Interaction of etretinate with methotrexate pharmacokinetics in psoriatic patients. J Clin Pharmacol 1990; 30: 802–7

    PubMed  CAS  Google Scholar 

  95. Furst DE, Koehnke R, Burmeister LF, et al. Increasing methotrexate effect with increasing dose in the treatment of resistant rheumatoid arthritis. J Rheumatol 1989; 16: 313–20

    PubMed  CAS  Google Scholar 

  96. Seideman P. Methotrexate — the relationship between dose and clinical effect. Br J Rheumatol 1993; 32: 751–3

    PubMed  CAS  Google Scholar 

  97. Mathers D, Russell AS. Methotrexate. In: Dixon JS, Furst DE, editors. Second line agents in the treatment of rheumatic diseases. New York: Marcel Dekker; 1992: 287–310

    Google Scholar 

  98. Pons M, Del Blanco J, Fiter J, et al. Low-dose methotrexate pharmacokinetics in rheumatoid arthritis: relationship with clinical response [abstract]. Arthritis Rheum 1992: 35 Suppl.: S142

    Google Scholar 

  99. Lafforgue P, Monjanel-Mouterde S, Durand A, et al. Lack of correlation between pharmacokinetics and efficacy of low dose methotrexate in patients with rheumatoid arthritis. J Rheumatol 1995; 22: 844–9

    PubMed  CAS  Google Scholar 

  100. Wallace CA, Sherry DD. A practical approach to avoidance of methotrexate toxicity. J Rheumatol 1995; 22: 1009–12

    PubMed  CAS  Google Scholar 

  101. Rheumatoid arthritis clinical trial archive group. The effect of age and renal function on the efficacy and toxicity of methtrexate in rheumatoid arthritis. J Rheumatol 1995; 22: 218–23

    Google Scholar 

  102. Tishler M, Caspi D, Yaron M. Methotrexate treatment of rheumatoid arthritis: is a fortnightly maintenance schedule enough? Ann Rheum Dis 1992; 51: 1330–1

    PubMed  CAS  Google Scholar 

  103. Kremer JM, Davies JMS, Rynes RI, et al. Every-other-week methotrexate in patients with rheumatoid arthritis. A double-blind, placebo-controlled prospective study. Arthritis Rheum 1995; 38: 601–7

    PubMed  CAS  Google Scholar 

  104. Hunt PG, Rose CD, Smith C. Parenteral methotrexate effective shelf-life following initial puncture of preservative-protected vial. Arthritis Rheum 1995; 38: 575

    PubMed  CAS  Google Scholar 

  105. Tett SE. Clinical pharmacokinetics of slow-acting antirheumatic drugs. Clin Pharmacokinet 1993; 25: 392–407

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bannwarth, B., Péhourcq, F., Schaeverbeke, T. et al. Clinical Pharmacokinetics of Low-Dose Pulse Methotrexate in Rheumatoid Arthritis. Clin. Pharmacokinet. 30, 194–210 (1996). https://doi.org/10.2165/00003088-199630030-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199630030-00002

Keywords

Navigation